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ABSTRACT 

 

 

Constitutive modelling of material plays an important role in the numerical analysis of products. 

Typical behaviour of rubber is viscoelastic with equilibrium hysteresis. Experimental data of rubber 

shows the loading and unloading paths are depending upon the maximum strain occurred in history 

of material, called as Mullins effect. Though, elastomers are capable of stretching to more than 500 

%, many applications like tyres require accurate representation at relatively low strains of 50 %. In the 

present work the existing stored energy functions are evaluated for such strains (<50%). NeoHookean, 

Mooney-Rivlin, Ogden, Yeoh, Arruda-Boyce and Vander Waals models are evaluated for these strains 

by using the uniaxial tension and compression data. A new stored energy function is proposed for 

small strains which is a logarithmic function of first and second invariants. The new stored energy 

function is compared with the existing models. Uniaxial tension experiments with various strain rates 

and quasistatic test were carried out to determine the rate dependent and rate independent 

behaviour of rubber. Finite strain linear and nonlinear viscoelastic models available in the literature 

have been used to explain the behaviour. It is observed that in Maxwell model, hysteresis increases 

upto a certain strain rate. Further increase in the strain rate results in decrease of hysteresis.   A new 

formulation for generalized Kelvin model has been developed using the dual variable concept which 

is consistent with the Second law of thermodynamics. Though, finite strain nonlinear Kelvin and 

Maxwell models give the same result in loading, they are different during unloading.  The results show 

that the delay in response of dashpot while unloading causes sharp edges in the hysteresis loop. 

 

 

 

 

 

 



Chapter1 

INTRODUCTION   

Mechanical properties of rubber are important designing rubber products. Rubber has good elastic 

characteristic along with damping properties. To improve the rubber properties filler material such as 

carbon black, sulpher etc. are added. Rubber withstands for large strain without failure. Typical 

applications of rubber are tyres, vibration absorbers etc. many applications rubber products will go 

large strains compression and tension together. Unlike metals, rubber is different mode the properties 

depends on previous history of material such as time dependent (viscoelastic) and maximum strain 

undergone so called as Mullins effect (Mullins et al,1957). Typically behaviour of rubber is thermo 

viscoelastic with equilibrium hysteresis (Lion, 1997) which exhibits stress softening characteristics. 

Constitutive modeling of rubber is important to design and development stage of rubber products. It 

predicts the behaviour of component in application using idealized data such as uniaxial tension and 

compression. Rubber undergoes large deformations, to predict the elastic behaviour hyperelastic 

material models are developed, where constitutive equations are derived from stored energy 

functions (Haupt, 2000). Rate dependent behaviour of rubber is captured using the finite strain 

viscoelastic material models (Lion, 1996; Lin et al, 2003; Reese and Govindjee, 1998a). Rubber also 

exhibits the rate independent dissipation which is characterized using endochronic theory of plasticity 

(Valanis, 1980). Dissipated energy converted into heat it increases the temperature of material, 

increase temperature degrades the elastic properties of material to predict the behaviour 

themoelastic material models are available in literature (Reese and Govinjee, 1998b).  

1.1. Experimental Work: 

This section describes the experimental data considered in this study. The significance of the Mullins 

effect is demonstrated. Uniaxial tension and compression tests have been conducted on rubber with 



different strain rates, relaxation and quasistatic tests. Dumbbell test samples are prepared as per 

ASTM-D412 standards for tension tests. Button type test sample are prepared for compression. The 

temperature of 250C is maintained through out the testing.  

Mechanical properties (stiffness) of filled rubber change drastically during the initial cycles, when 

material experiencing strain. This behavior is commonly referred to as the Mullin’s effect. Specimen 

is loaded to a particular percentage of strain followed by unloading upto zero stress, and then loaded 

again, it follows another loading and unloading path, like that it change the loading paths in first few 

cycles (approximately 8 to 12 cycles) after that, it is stabilize . Once the material stabilized it will not 

change the loading path below maximum strain where it stabilized. If the specimen is loaded new 

maximum percentage of strain above the previous maximum strain, it again change the loading graph, 

if loaded repeatedly it stabilizes to another loading path. So stress-strain relation of rubber depends 

upon the maximum strain undergone in previous history of the material. 

In order to stabilize the material, first twelve strain controlled loading and unloading cycles are given 

continuously to stabilize the material behaviour. After this process one hour relaxation time is allowed 

to remove the rate dependent hysteresis. Then the test is conducted at a strain rate of 0.00066 sec-1 

(Lion, 1996).  Fig.1.1 shows the loading and unloading graph of the stress softened to different 

percentage of strains (i.e. 50%, 120%, 200%, and 300%). It can be seen that the reduction of stiffness 

of the material is a function of the maximum strain at which stress softening occurred. The same kind 

of behavior is observed in literature (Kurt Miller, 2000).  
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Many applications such as tyre, rubber may not undergo large strains, one may interest to do 

experiments upto 40-50% of strain to predict the constitutive models. This study considers maximum 

50% strain tension and 30% of in compression. Once Mullins effect removed upto 50% of strains and 

kept the samples one hour to relax the material and test conducted different strain rates 0.00066, 

0.0066, 0.066 and 0.155 sec-1 (which is equal to 4%/min, 40%/min, 400%/min, 1000%/min). Note that 

each strain rate new sample has been used. Experimental results are shown in fig.1.2 it can be 

observed that with strain rate increases stress are increasing. If calculate the area under loading and 

unloading curves each strain rate, it can be observed that it is increasing with strain rate shown in 

fig.1.3.similar kind of behaviour observed in Dalrymple et.al (2007).  

 

 

 

 

 

Fig.1.1. Variation in loading and unloading of stress softened upto 50%, 120%, 200% and 

300% percentage of strain. 
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Fig.1.2 showing the rate dependent behaviour of rubber 



 

 

 

 

 

 

 

 

Compression test has been conducted with the same material. Similar procedure has been followed. 

Button type sample is of 29 mm diameter and 13mm thickness used. Silicone lubricant used to reduce 

the friction effect. Mullins effect is removed upto 35% of nominal strain. Test is conducted different 

strain rates of 0.00066, 0.0066, 0.066, and 0.155 sec-1 upto 30% of nominal strain. Test results are 

shown in fig.1.4 
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Fig.1.4. shows strain rate dependent behaviour in compression 



 

1.2. Quasistatic test: 

Rate independent hysteresis can be captured by quasistastic test. After removing the Mullins effect, 

stepped strain in loading and unloading given as input to specimen is shown in fig.1.5, 1.6 respectively. 

Relaxation kept one hour for each step. Fig.1.7, 1.8 is the response is measured force versus time in 

loading and in unloading . It can be observed from fig.1.7,.18 that stress is dropping exponentially and 

material is completely relaxed at 60 min (1hour).once material is relaxed the time dependent stresses 

are disappear, the stress at which material is relaxed is summation elastic and plastic (rate 

independent hysteresis) behaviour. To get the rate independent hysteresis, force is measured each 

step at end of relaxation time and converted into nominal stress versus nominal strain plotted in 

fig.1.9 along with different strain rates. Loading path of quasistatic result is used to fit the hyperelastic 

material models. Fig.1.10 shows the area under each loading and unloading path. It is clear that 

hysteresis increases with stain rate and even at quasistatic test, material has the hysteresis with is 

called as equilibrium hysteresis (Haupt ,2000) 

 

 

 

 

 

 

 

 

 

QUASI STATIC TEST
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QUASI STATIC TEST
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Fig.1.8. Response measured force in the quasistatic test (unloading)  

 

Fig.1.7. Response measured force in the quasistatic test (Loading)  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3. Literature survey 

Constitutive models for rubber have attracted the attention of researchers for the past seven decades.   

In the literature, a number of stored energy functions have been reported. The models that are 

popular in the numerical community are the once proposed by Ogden (1972), Yeoh (1993), Mooney 

and Rivlin, Arruda and Boyce (1993), Vander Waals (Kilian, 1981) to name a few. Of these models, 

Arruda and Boyce and Vander Waals are based on a statistical mechanics approach and the rest are 

based on a phenomenological approach. Rubber also exhibits Mullins effect, which is represented by 

models like Ogden-Roxburgh (1999) and Qi-Boyce (2004). These models are integrated with the stored 
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Fig.1.9. shows the rate dependent behaviour of rubber 

Fig.1.10. shows the rate dependent and rate independent hysteresis  



energy function. These models are still evolving. In the available literature all hyperelastic models are 

evaluated at much higher strains.  The efficiency and accuracy of hyperelastic models for chloroprene 

rubber have been documented (Bergstrom). Though the material itself can withstand strains over 500 

%, many applications require accurate description of its behaviour at low strains, upto 50 %. It is also 

the practice in industries to use tensile data to predict the behaviour of rubber components under 

multiaxial loading. This work also explores the problems with such a practice. 

Experimental data of rubber shows the rate dependent behaviour, it is represented using viscoelastic 

material models. The fundamental models are Maxwell and kelvin-voigt model used to represents the 

viscoelastic behaviour. Basic linear viscoelastic models are valid only in linear range and small 

perturbation away from thermodynamic equilibrium. Many applications require the model to be 

predicting finite strains. Number of viscoelastic models is proposed which are suitable to rubber. e.g. 

Lubliner (1985) , Le Tallec et al (1993) and Bergstorm and Boyce (1998).  Lubiner (1985) proposed the 

viscoelastic constitutive equations for kelvin by extending the small linear viscoelastic evolution 

equations in terms of strain to finite strain tensors and also proposed Maxwell model by additively 

decomposition of strain energy into elastic and inelastic part. Reese and Govindjee (1998a) extended 

this approach to finite strain viscoelasticity and developed a finite strain viscoelastic constitutive 

model for large deformations and large deviations away from thermodynamic equilibrium which is 

consistent with the second law of thermodynamics. Bonet (2001) assumed evolution equation in 

terms of second Piola kirchoff stress tensor instead of strain to introduce the nonlinearity in evolution 

equation. Bergstorm and Boyce (1998) conducted experiments on filled and natural rubber and 

proposed a constitutive model based on the multiplicative decomposition of the deformation gradient 

with an assumed nonlinear relation between stress and strain rate. Drozdov (1997) employed 

fractional derivative tensors. Reese and Govindjee (1998b) have proposed a thermo-viscoelastic 

constitutive model using an evolution law to include thermal effects. The computational setting is also 

addressed and they have used predictor-corrector algorithm to integrate the evolution equations. 

Recently models proposed by Haupt and Sedlan (2001), Lion (1996, 1997), Lin and Schomburg (2003), 



Nedjar (2002a,2002b) consider viscoelastic-elastoplasticity which include rate dependent and the so 

called rate independent hysteresis. Lion (1996) has suggested a viscoelastic-elastoplastic constitutive 

model using an additive decomposition of the total stress into a rate independent equilibrium stress 

and a rate dependent overstress. He assumed that the rate dependent stress is a nonlinear function 

of strain rate using the viscoelastic coefficient in an exponential form. Lin and Schomburg (2003) have 

proposed a finite viscoelastic-elastoplastic constitutive model for rubber like materials including 

Mullins effect. Their model is based on the multiplicative decomposition of the deformation gradient 

and is derived using objective rates for calculating time derivatives. Simo (1992) studied in detail the 

return mapping algorithm for finite elasto-plasticity from a computational point of view and his work 

uses principle of maximum dissipation. 

1.4. Motivation and Objectives: 

Experimental data shows that huge variation in rubber loading and unloading depending upon the 

history of material. Because of the complexity of the Mullins effect, if one is interested in data upto to 

50 percentages of strains. In the literature all the hyperelastic models are evaluated at much higher 

strains. These models do not seem to be accurate for moderate strains. The objective is to evaluate 

the existing hyperelastic models upto 50 percent of strain and propose a new stored energy function 

for moderate strains (<50%) to capture both tension and compression in one equation.  

The Finite strain viscoelastic models are developed in literature captures the experimental data during 

loading, and it is not clear how these models behave during unloading with different strain rates. 

Objective is to bring the issues with existing models while predicting the experimental data of rubber 

in loading and unloading. And a new formulation for finite strain Kelvin model developed to address 

these issues. 

 

 



1.5. Organization of thesis: 

This thesis deals with hyperelastic and viscoelastic material models used to predict the rubber 

behaviour. 

Chapter 1 gives the introduction rubber characteristic such as Mullins effect, rate dependent and rate 

independent hysteresis. The importance of constitutive modeling of rubber is discussed and followed 

by experiment conducted as stress softening dependent, rate dependent experiments with different 

strain rates, quasistatic test, and compression test, Followed by literature survey, motivation and 

objectives. 

Chapter 2 starts with popular stored energy functions which are available in literature and discussed 

with issues with the existing models while fit the low stains. 

Chapter 3 starts with the deformation gradient and followed by conditions should satisfy the stored 

energy function. A new stored energy proposed and comparison has done with existing models using 

r-square method. Finite element implementation of proposed model is discussed in detail fashion. 

Chapter 4 starts with concept of internal variables and decomposition of deformation gradient. 

Derivation Maxwell model and new formation for kelvin-vigot model is discussed. Followed by finite 

element implementation of these models are discussed. 

Chapter 5, the results of implanted Maxwell and developed kelvin models are discussed while fitting 

the rubber loading and unloading test data. 

Chapter 6, conclusions based on current work is presented. Scope of future work discussed.  

 

 

 

 

 



Chapter 2 

HYPERELASTIC MATERIAL MODELS 

2.1. Introduction 

Typical mechanical behaviour of rubber is nonlinear viscoelastic with weak equilibrium hysteresis 

(Lion, 1997).  The type of behaviour invoked for analysis depends on the particular application. In 

many instance rubber is treated as hyperelastic, defined by a stored energy function.  The 

determination of the coefficients in these functions generally require uniaxial, biaxial and shear test 

data. The range of strain and strain rate has a bearing on the accuracy of the results (Kurt Miller, 2000). 

It is also important that the coefficients obtained by the laboratory tests should represent the three 

dimensional state of stress accurately. Because of the complexity of the Mullins effect, if one is 

interested in data upto to 50%, then one is forced to remove the effect only upto that strain and test 

the data for elastic properties.  This chapter evaluates the existing models with tensile test data upto 

50% of strain.  

2.2. Stored energy functions 

Stored energy function ( ) is a scalar valued function which is objective (Holzafel, 1990) and for a 

homogeneous isotropic materials, stored energy function is a function of invariants of C,   given by the 

following equation  

1 2
(C) (I , I , J)                                                                                    (2.1) 

In the eq. (2.1) I1, I2, and J are defined as follows  

2 2 2

1 1 2 3
I                                                                                                             (2.2a) 

2 2 2 2 2 2

2 2 3 3 1 1 2
I                                                                                                    (2.2b) 



1 2 3
J                                                                                                       (2.2c) 

Where, 
2 2 2

1 2 3
, ,    are the eigen values of  C  and 

1 2 3
, ,    are the principal stretches of 

deformation gradient ( F ). In order to compare the stored energy function with experimental data 

eq. (2.1) is reduced into Cauchy stress given by the following eq. (2.3) 

i i

i

p (no summation over i)


   


                                                           (2.3) 

2.3. Calculations: 

2.3.1. Uniaxial:  

For incompressible material the principal stretches are as follows 

1 2 3; 1                                                                  (2.4) 

Stress tensor is given by 

1 u 2 3; 0                                                               (2.5) 

u 1 3

1 3

 
    

 
                                                              (2.6) 

First and second invariants in terms of these stretches  

2 2ln ln

1

2
I e 2e      


                                                            (2.7) 

2ln ln

2 2

1
I 2 e 2e      


                                                                             (2.8) 

2.3.2. Biaxial: 

The stretches in two directions are equal in biaxial and due to incompressibility constraint the third 

direction stretches are given by 



2
1 2 3; 1               (2.9) 

Cauchy stresses are 

1 2 b 3; 0                                                                 (2.10) 

b 1 3

1 3

 
    

 
                                                                (2.11) 

First and second invariants in terms of these stretches  

2 2ln 4ln

1 4

1
I 2 2e e      


                                                      (2.12) 

4 2ln 4ln

2 2

2
I 2e e      


                                                      (2.13) 

As it can be seen from equations (2.7), (2.8), (2.12) and (2.13) first invariant and second invariants 

are symmetry with respect origin of true stress-strain plane. 

2.4. NeoHookean form (NH form):  

The neoHookean form of stored energy function is given by the following equation (Treloar, 1978) 

10 1
C (I 3)                                                                           (2.14) 

Combining eq. (2.4) and eq.(2.3), the following equations are obtained 

2

u 10

1
2C

 
    

 

                                                                    (2.15) 

2

b 10 4

1
2C

 
    

 

                                                               (2.16) 

2

s 10 2

1
2C

 
    

 

                                                                                         (2.17)  



Eq. (2.15), eq. (2.16) and eq. (2.17) show that the uniaxial tension, biaxial tension and shear behaviour 

are function of  
2  (1  , 41   and 21  values are small compared to 

2 in tension). In the case of 

uniaxial compression 1   dominates the  
2  term     and in biaxial compression   41   dominates.  

The result is that, any Stored Energy function   which depends on the first invariant always predicts a 

lower uniaxial compression value than uniaxial tension. The biaxial compression is greater than the 

biaxial tension, which is not the case for a function which depends on the second invariant. On the 

otherhand the function which depends on the second invariant behaves in an opposite fashion.  

The fig.2.1 and fig. 2.2 shows  the NeoHookean  model fitted with uniaxial tension and compression. 

NH model gives better fit in uniaxial tension and in   uniaxial compression, when the coefficients are 

determined using the uniaxial tension data.   the error in the fit in uniaxial tension increases when 

coefficients are determined using uniaxial compression data.  This model gives same fit when the 

coefficients predicted from uniaxial tension and both tension and compression. So the uniaxial tension 

data alone gives the best fit for this model. This is because of the difference in the order of the 

dominant terms in the two modes of deformation.   
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Fig.2.1. Fit of uniaxial and biaxial tension with neoHookean model 
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Note: In all figures names are given such that three words in between dashes. First one is represented 

by short form of model used example NeoHookean by NH, Mooney Rivlin by MR. second one 

represented type of test data used to fit the model , tension (ten) and compression (com) and third 

one represents the mode of deformation predicted. In this thesis biaxial means it is equibiaxial unless 

it is specified. 

Though biaxial test data is not available, model behaviour is plotted to show how the model behaves 

in biaxial mode.  From fig.2.1 and 2.2, it is observed that small variation in uniaxial mode while using 

uniaxial tension and compression data used fit the model magnifies in biaxial mode. The coefficients 

of all models are given in table.1,2,3 when coefficients are determined using uniaxial tension , uniaxial 

compression and both uniaxial tension and compression respectively. 

2.5. Yeoh form:  

Yeoh form of stored energy function is a function of the first invariant of right Cauchy Green 

deformation tensor (yeoh, 1993) 

2 3

10 1 20 1 30 1C (I 3) C (I 3) C (I 3)                                    (2.18) 

Fig.2.2. Fit of uniaxial and biaxial compression with neoHookean model 



The Yeoh form clearly predicts the shape of the stress strain curve at higher strains. But it is interesting 

to point out from the fig.1a that even at lower strains, where experimentally the typical sigmoidal 

shape does not develop, there is a tendency to mimic the shape with Yeoh model. Fig.2.3 and 2.4 are 

shown the prediction of the Yeoh model for small strains in uniaxial and biaxial when the coefficients 

are used uniaxial tension and uniaxial compression used to fit the model. This model deviates in 

compression from the experimental values above   20 percent of strains. It can be observed that this 

model overestimates the uniaxial tension curve when uniaxial compression data is used to determine 

the coefficients. The model gives a better fit when both tension and compression data are used to 

determine the coefficients. Though the model behaves in uniaxial is similar, the results are quite 

different in biaxial mode. It can be seen from fig.2.3 the estimation of biaxial tension values are very 

close to uniaxial tension values when use uniaxial tension data used to fit the model. Estimation of 

biaxial compression is very high values when use uniaxial compression data to fit the model.  
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Fig.2.3. Fit of uniaxial and biaxial tension with Yeoh model 
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2.6. Arruda-Boyce form (AB): 

This model is based on “eight-chain representation of the macromolecular network structure and non-

Gaussian behaviour of the polymer chains” (Arruda and Boyce, 1993).The series expansion form the 

stored energy function is used. The first five terms are given as (ABAQUS) 

2 2 3 3

1 1 12 2

m m

4 4 5 5

1 12 2
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                                                  (2.20) 

For small strains the first term dominates and behaves exactly like NH model. 

2.7. Mooney-Rivlin form (MR):  

Mooney-Rivilin form of stored energy function depends on the first and second invariants of C. It can 

be expressed as (ABAQUS)  

10 1 01 2
C (I 3) C (I 3)                                                (2.21) 

Fig.2.4. Fit of uniaxial and biaxial compression with Yeoh model 



If only one test data (uniaxial tension or compression) is used to determine the coefficients, there is a 

possibility that either C10 or C01  is negative. In the first case the model becomes unstable in biaxial 

compression. When C01 is negative, the model becomes unstable in biaxial tension. If C10 >> C01 it 

behaves like the neoHookean model and if C10 is equal to C01 the model becomes symmetric with 

respect to origin. 

Fig.2.5 shows comparison of fit of this model in uniaxial and biaxial tension when the coefficients are 

used to fit the model uniaxial tension, uniaxial compression and both tension and compression. When 

the coefficients are determined from tension data. The fit is good in uniaxial tension. it is 

overestimating the biaxial tension. Fig.2.6 shows comparison of fit of this model in uniaxial and biaxial 

comparison when the coefficients are used to fit the model uniaxial tension, uniaxial compression and 

both tension and compression. It is very poor in compression prediction when tension data used. this 

model gives the good prediction is in tension and compression when coefficients are determined using 

both uniaxial tension and compression data . 
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Fig.2.5. Fit of uniaxial and biaxial tension with Mooney Rivlin model 
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2.8. Vander Waals form:  

This model was proposed by Kilian in 1981, based on concepts from ideal gas laws. It is based on an 

entropy elastic ideal polymer network.  

  
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3 2
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 
1/ 2

1 2 2

m

I 3
I 1 I I ;

3

 
      

  

                                                               (2.23) 

Where µ   is Shear modules, m   is locking stretch, a is global interaction parameter and   is Invariant 

mixture parameter. 

In fig.2.7 and fig.2.8 shows fit of this model when uniaxial tension and compression data is used to fit 

the model. The fit of this model is like that of Yeoh, when the coefficients are determined using uniaxial 

tension data. It gives excellent fit when   uniaxial compression is used to determine the coefficients of 

the model. 

Fig.2.6. Fit of uniaxial and biaxial compression with Mooney Rivlin model 
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2.9. Ogden form: 

Ogden stored energy function is written in terms of principal stretches instead of the invariants. Ogden 

form can be reduced into neoHookean and Mooney Rivlin by choosing particular values for  and N. 

Ogden form of stored energy function is given as (ABAQUS), 

 r r r

N
r

1 2 3
r 1

r

2
3

  




       


                                                                 (2.24) 

Fig.2.7. Fit of uniaxial and biaxial Tension with Vanderwaals model 

Fig.2.8. Fit of uniaxial and biaxial compression with Vanderwaals model 



Where 

     
r r
,   are constants      

In fig.2.9, 2.10 shows the fit for Ogden model, when n=1 by using uniaxial tension and compression 

data. This model predicts the uniaxial test data very well. It can be observed that the error is very high 

for compression data when tension data used to fit the model. As can be seen from fig.2.9 this model 

overestimates   uniaxial tension when uniaxial compression is used to determine the coefficient.  this 

model gives a better fit when the coefficients are determined using both uniaxial tension and uniaxial 

compression data.  
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Fig.2.10. Fit of uniaxial and biaxial Tension with Ogden model 

Fig.2.9. Fit of uniaxial and biaxial Tension with Ogden model 



Table.1. Hyperelastic models coefficients are predicted using uniaxial tension data 

Sl.No MODEL COEFFICIENTS 

1 neoHookean C10  =0.2876 

2 Yeoh   C10 =  0.43;  C20 =  -0.52;  C30=0.44; 

3 Arruda-Boyce µ =0.575;  µ0 =0.575;  m=1645 

4 Mooney-Rivlin  C10 = -0.159;   C01=0.57 

5 Van der Waals µ =1.072;  m =2.25;  a=3.03;  =0.0 

6 Ogden, n=1 µ=0.787; =-3.99 

 

Table. 2.  Hyperelastic models coefficients are predicted using compression test data 

Sl.No MODEL COEFFICIENTS 

1 neoHookean C10  =0.353 

2 Yeoh   C10 =  0.422;  C20 =  -0.445;  C30=0.6164; 

3 Mooney-Rivlin  C10 = 0.6324;   C01=-0.2238 

4 Van der Waals µ =1.0187;  m =2.23;  a=2.846;  =0.406 

5 Ogden, n=1 µ=0.742; =4.012 

 

 

Table.3. Hyperelastic models coefficients are predicted using uniaxial tension and 

compression test data 

 

Sl.No MODEL COEFFICIENTS 

1 neoHookean C10  =0.3057 

2 Yeoh   C10 =  0.423;  C20 =  -0.434;  C30=0.338; 

3 Mooney-Rivlin  C10 = 0.117;   C01=0.1127 

4 Van der Waals µ =1.0187;  m =2.23;  a=2.846;  =0.406 

5 Ogden, n=1 µ=0.668; =-2.078 

 



 

2.10. Summary: 

In this chapter popular models such as neoHookean, Mooney Rivlin, Yeoh, Ogden, Arruda-Boyce and 

Vander Waals models  behaviour studied for the  small strains (<50%). The Stored energy function 

when expressed in terms of the first invariant alone can fit compression data with a small error, using 

the uniaxial tension data. On the otherhand, the tension behaviour cannot be predicted accurately 

from compression data vanderwaals model captures tension behaviour from uniaxial compression 

with small error. it fails the predicting the compression data from tension. To fit Ogden and Mooney 

Rivlin model requires the both uniaxial tension and compression data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

PROPOSED HYPERELASTIC MODEL 

It is practice for many industries using uniaxial tension or uniaxial compression to fit the hyperelastic 

material models. Depending upon the curing process the material properties will change. It is may not 

possible to conduct the compression test every time and results will depend how the test has been 

conducted. It is discussed in chapter2, from uniaxial tension data neoHookean and yeoh models are 

predicting the uniaxial compression with error. Form uniaxial compression except vanderwaals none 

of the model is capturing the uniaxial tension. In this chapter a new stored energy function is proposed 

which captures accurately either from uniaxial tension or uniaxial compression.  

3.1. Deformation Gradient: 

Deformation gradient gives the relationship between an initial or reference configuration and the 

deformed configuration. If dX is the infinitesimal line element in the reference configuration and 

same line element is deformed to dx  after the application of loads, the deformation gradient F gives 

the relation ship between dX and dx  

i

i J

J

x
dx dX

X





                                                                                                                (3.1) 

i

iJ

J

x
F

X





                                                                                                                     (3.2) From Equation 3.2 it 

can be observed that F is a two point tensor involving point in reference configuration as well as 

deformed configuration.  

3.2. Polar decomposition of deformation gradient 



The deformation gradient multiplicative decomposed into symmetry part and orthogonal part. 

Symmetry part represents the pure displacement and orthogonal part represents the rotation of 

material  

F=RU=vR                                                                                                                       (3.3) 

U is right stretch tensor, v is left stretch tensor. Both tensors have the same eigen values.  

3.2 Deformation Tensors 

There are two most important deformation tensors through which most of the strain measures are 

defined. The first one is called right Cauchy-Green deformation tensor or Green deformation tensor C 

defined through Equation 3.4 and the left Cauchy-Green deformation tensor or finger deformation 

tensor b defined through Equation 3.5.  

TC F F U2                                                                                                                   (3.4)  

 Tb FF v2                                                                                                                  (3.5) 

One of the important features of both  C and b is that they are symmetric have same eigen values and 

eigen vectors varies with rotation means if C has the e eigen vector b has the eigen vector is Re. 

3.3. Hyperelastic material: 

Elastic material is defined as current state of stress is dependents upon the current state of 

deformation. Constitutive equation reads as (Haupt,2000) 

P f (F)                                                                                                                           (3.6) 

Here, P is first poila stress tensor.  f(.) is a symmetry tensor valued function of  F. 

A hyperelastic material are defined as, whose constitutive equations are defined based on stored 

energy function. 



(F)
P

F





                                                                                                                      (3.7) 

3.4. Conditions should satisfy the stored energy function: 

The stored energy function written in terms of deformation should satisfy the following conditions 

(Holzafel, 2000) 

a) Normalization, The stored function should vanishes with respect to reference configuration and 

increases with deformation 

(F) 0 if F I

(F) 0 if F I

  

  
                                                                                                        (3.8) 

b)  The   should satisfy the growth conditions. It implies that  

(F) as def (F)

(F) as def (F) 0

   

    
                                                                                      (3.9) 

c) Objectivity   is scalar valued function value completely independent of frame of reference. i.e. 

Translation and rotation of deformation should not change the energy. 

(F) (QF) (U)                                                                                                       (3.10) 

Q can be any orthogonal tensor, for special case Q=RT implies QF=U 

d) Isotropy hyperelastic materials strain energy function is isotropic function (independent of rotation 

of current configuration), it should satisfy  

T(F) (FQ ) (v)                                                                                                     (3.11) 

e) U is unique positive square root of C and v is unique root of b. the function  

(U) (C) (b) (v)                                                                                               (3.12) 



f) Constitutive requirement of the stored energy function should be convex with respect to 

deformation gradient F. condition for convexity is given in eq(3.13) (Hartmann and Neff, 2003) 

     F (1 )a b F (1 ) F a b                                                                 (3.13) 

  [0,1],  a, b are the vectors 

Convexity condition with respect to derivative is 

2

2

(F)
(F a b) (F) : (a b)

F

or

(F)
0

F
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      



 




                                                                          (3.14) 

Convexity of strain energy density is important to study the uniqueness of solution in nonlinear 

problems. It gives the positive definiteness of elastic tensor. Full positive defineness would guarantee 

global uniqueness of solution in case where physical reason for such a uniqueness is not expected 

(Ball, 1977; Drozdov,1996). 

g) Suitable condition for material instability is the quasiconvex proposed by Morrey (1952). The 

quasiconvexity condition is 

     
D D

X,F u(x) dx X,F m(D) X,F                                                  (3.15) 

Should hold for bounded open subset 3D R , and for all u is subset of infinitely differentiable 

functions. Here m denotes the Lebesgue measure. Quasiconvexity condition stored energy function 

satisfies the Legendre-Hadamard or ellipticity condition. 

2

2
H : : H 0

F

 



                                                                                                             (3.16) 

Here H a b  . Quasiconvex condition of  ensures the quadratic convergence of solution in certain 

iteration techniques.  



h) Polyconvex:    is Polyconvex, if there is function 
1 2(I , I , J) is convex in 

1 2I , I  and J jointly. If the 

function additively decomposed, then the function is Polyconvex if and only individual terms are 

convex. Let stored energy   sufficiently smooth. Then, if   is Polyconvex, it is quasiconvex and 

elliptic. 

3.5. Stored energy function 

Nearly incompressible materials deformation gradient is decomposed into deviatoric part and 

volumetric part. It is assumed stored energy function is additively decomposed into deviatoric and 

volumetric part (Holzafel, 2000) 

dev dev vol vol(F ) (F )                                                                                                 (3.17) 

Or 

dev vol dev 1 2 vol(C) (J) ( I , I ) (J)                                                                     (3.18) 

Where  1/3

devF J F ;  1/3

volF J I ;  T

dev devC F F ;  J =det F and 1 2I , I  are first and second invariants of 

C . 
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F FF
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J J
                                                                                                              (3.19) 

2

2 4/3

adj F
I

J
                                                                                                                  (3.20) 

Some deviatoric terms which are satisfy the Polyconvexity conditions are (Hartmann and Neff ,2003)  

k

1 1 1(I )            = I                                                                                                         (3.21) 

3k /2

2 2 2 (I )          = I                                                                                                     (3.22) 

2I is not convex function and mixed term 
k 3k / 2

1 2I I is not Polyconvex. Where, k is positive integer. 



Some volumetric terms which satisfy the Polyconvex conditions are 

 3 2  k -k
(J)             =  J J                                                                                      (3.23) 

 
k

4 1  (J)             =     J                                                                                            (3.24) 

3.6. Proposed Stored energy function: 

The new stored energy function is assumed to be a function of first and second invariants of the right 

cauchy deformation tensor.  

 
3k 3k

1 2
1 3k

I (1 ) I 1
C *ln J 1 (1 k )

3 D

   
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 
                        (3.25)  

In the eq. (3.25) k can be any positive integer in this case k is considered as one,   can vary from zero 

to one and 
1

C is a constant which can be determined from any one of the test data.  =0.5 yields the 

symmetry with respect to true stress-true strain condition, about the origin. The asymmetry of test 

data can be predicted by varying the  values. When   is greater than 0.9 the proposed model 

behaves like neoHookean model. If one test data available, it is better to keep the  value to be 0.5, 

and then determine the C1 coefficient. 

Fig.3.1, 3.2 shows prediction of proposed model in tension and compression. From fig.3.1 it can be 

seen this model gives better estimation than any other model in uniaxial tension when uniaxial 

compression data is used to determine the coefficients. From  fig.3.2 shows that this model gives 

better estimation in uniaxial compression when the coefficients are determined from uniaxial tension.  

The coefficient are given table.3.1 coefficient are predicted using curve fitting technique in MATLAB. 

The procedure to fit model is given in section 3.9. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Table.3.2. Proposed models coefficients are predicted using different test data’s 

Sl.no Test data used Proposed model coefficients 

1 Uniaxial tension C1 =0.025; =0.5 

2 Uniaxial compression C1 =0.0248;   =0.5 

3 Both uniaxial tension and compression C1 =0.024; =0.62 

 

3.7. Finite element implementation: 

Proposed stored energy function implemented in commercial package ABAQUS6.5.1 using user 

material (UMAT) option algorithm as follows (Holzafel,2000) 

1. Initial deformation gradient input from ABAQUS (F) 
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3.1. Fit of uniaxial and biaxial tension with prposed model 

3.2. Fit of uniaxial and biaxial tension with prposed model 



2. determine the determent of deformation gradient 

J det F                                                                                                       (3.26) 

3. calculate the deviatoric part of deformation gradient 

_ 1
3F J F


                                                                                                     (3.27) 

4. calculate left cauchy deformation tensor  

__ _
TB FF                                                                                                    (3.28) 

5. calculate eigen value and eigen vectors of  
_

B  

6. calculate the principal values of cauchy stress  

i i

i


  


                                                                                                (3.29) 

7. rotate stress into 3-D space using eigen vectors of B 

8. calculate the elastic tensor ( abcd )using following relations    
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                                          (3.30) 

Where 

i
ij j

j
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
                                                                                               (3.31) 
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i jij
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                                                             (3.32) 

9.  Update the stress and elastic tensor to ABAQUS 

10. detailed derivation of elastic tensor given in Appendix 



 

3.8. Comparison between the proposed model with the existing models: 

Fig 3.3 summarizes the R2 values for different models. Coefficients of all the models are determined 

using uniaxial tension data. It can be seen that R2   in tension of all the models are almost the same in 

tension except NH model. But in compression, the proposed model has the highest R2 value. Fig.3.4 

shows the R2 values when compression data is used to predict these models. It can be observed that 

only Vander Waals and proposed models are able to capture the tension data. Among these two, the 

proposed model has the highest R2 value.  Fig.3.5 summarizes the R2 values when both uniaxial tension 

and compression data are used to predict the models. It can be seen that vanderwaals has the highest 

correlation along with the proposed models.  
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Fig.3.3. Comparison of R2 value of NH, Yeoh, MR, Ogden, Vander Waals and proposed models 

in uniaxial tension and compression. Models coefficients are determined using uniaxial tension 

data 
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3.9. The coefficients of proposed model using uniaxial test data 

Eq. (3.25) reduced in case of uniaxial tension (or compression) using eq. (2.4) to eq.(2.6) 

 
 2 2 21

u 1 23 3 2

1 2

162C 1 1
I 1 I

I 1 I

    
            

        

                        (3.33)           

If one test data (uniaxial tension or uniaxial compression) is available convert the data into stretch 

verses true stress (or nominal stress) keep the  value is 0.5 and curve fit in matlab determine the 

constant C1 value.  

Fig.3.4 Comparison of R2 value of NH, Yeoh, MR, Ogden, Vander Waals and proposed models in 

uniaxial tension and compression. Models coefficients are determined using uniaxial 

compression data 

Fig.3.5 Comparison of R2 value NH, Yeoh, MR, Ogden, Vander Waals and proposed models in 

uniaxial tension and compression. Models coefficients are determined using both uniaxial 

tension and compression test data. 



If uniaxial tension and uniaxial compression both data are available convert the data into stretch 

verses  true stress (or nominal stress) keep the    value limits as zero to one and the fit the eq. (3.13) 

using curve fit in matlab determine the  C1  and  values. 

3.10. Conditions satisfied by proposed stored energy function: 

The volumetric part of stored energy function well known term. The proposed deviatoric part of 

stored energy function is checking the necessary conditions to be satisfied. 

a) Normality condition, in reference configuration (F=I) deviatoric part first and second invariants 

are given by 

1I 3 if F I                                                                                                            (3.34a) 

1I 3 if F I                                                                                                            (3.34b) 

2I 3 if F I                                                                                                            (3.35a) 

2I 3 if F I                                                                                                            (3.35b) 

First and second invariants (3.34a), (3.35a) substitute in equation (3.25).  

3k 3k

dev 1 3k

3 (1 )3
C *ln ln(1) 0

3

   
    

 
      (3.36) 

So the proposed deviatoric function is satisfies the normality condition  

b) Growth condition, in eq(3.9) the first and second condition  

If 
1 2 3 1 2 3 1 2 3det(F) or or or or           

If 
1 2 3 1 2 3 1 2 3det(F) 0 0 or or 0 or or 0              

For 1 0 or   , the invariants are tends to infinite 



2 2

1 1 2 2 2

1 2

1
I       

 
                                                                                          (3.37a) 

 2 2

2 1 22 2

1 2

1 1
I       

 
                                                                                        (3.37b) 

The stored energy function tends to infinite 

 dev 1
C *ln                                                                                                (3.38) 

So the proposed deviatoric function is satisfies the growth condition  

c) Convexity condition, as we understood stored energy function is not convex function. It is locally 

convex by defining the quasiconvexity.  

3k 3k

1 2

3k

I (1 ) I
(1 k )

3

  
         

For (0,1) the function  is satisfies the Polyconvex condition (Hartmann and Neff, 2003). If 

is convex, it is may or may not be a logarithmic convex.  Because of more number of parameters 

involved in elastic tensor (detailed derivation of elastic tensor given in appendix) it is difficult to prove 

the function is quasiconvex. Depending upon properties of  ( 1and convex)   a simple 

equallent function is assumed as 

2n1 a * x    

It is easy to prove  is log-convex in domain of (
2n1 1 a * x 2n   ). 

Similarly the function  is log-convex in domain of 

3k 3k

1 2

3k

I (1 ) I
1 3k

3

  
   . 



For small strains ( 50% ), all possible deformations  value less than 3k. So the proposed function  

dev
  is quasiconvex. Quasiconvexity condition of dev

 automatically satisfies the elastic tensor to 

positive define in that range. 

3.11. Summary: 

In this chapter a new stored energy function is proposed and compared with existing models by 

calculating the r-square values. The proposed model checked for necessary condition to be satisfied 

by stored energy function. Proposed model implemented in ABAQUS/standard using UMAT option. 

Detailed steps are given for finite element implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4  

FINITE STRAIN VISCOELASTIC MODELS 

4.1. Introduction: 

Viscoelastic constitutive models are used to define the rate dependent behaviour. As per Haupt (2000) 

rate dependent behaviour can be defined using functional with fading memory and representing by 

means of the internal variables. In two cases total stress is spilt into elastic part and inelastic part. In 

this work we are only concentrating only internal variables concepts. 

4.2. Representing by means of internal variables: 

 

In this total strain additively decomposed into elastic part and viscoelastic (inelastic) part. In 3-D 

Equallent to this is multiplicative decomposion of deformation gradient (F ) to elastic part (
e

F ) and 

viscoelastic part (
v

F ) by introducing intermediate configuration (Lion, 1997b; Lin and Schomburg, 

2003).schematic representation of multiplicative deformation shown in fig.3.1. 


e v

F F F                                     (4.1a) 

4.2.1. Strain tensors: 

Fv 

F 

Fe 

Initial 

configuration Current 

configuration 

Intermediate 

configuration 

Fig.3.1. Pictorial representation of multiplicative decomposion of deformation gradient 



Introduction intermediate configuration is purely imaginary. The decomposition of deformation gives 

rise to other deformation tensors which are defined with respect reference, intermediate and current 

configuration and
a

N , ˆ
a

N , 
a

n  are the eigen vectors.                                                                                                

Right cauchy Green of deformation tensor                                                                                                             

3
2

1

   
T

a a a
a

C F F N N                         (4.1b) 

Elastic part of right cauchy Green deformation tensor 

3
2

1

ˆ ˆ


   
T

e e e ae a a
a

C F F N N                                (4.2) 

Inelastic part of right cauchy Green deformation tensor 

3
2

1

   
T

v v v av a a
a

C F F N N                                      (4.3) 

Left cauchy Green of deformation tensor  

3

2

1

   T

a a a

a

b FF n n                     (4.4) 

Elastic part of left cauchy Green deformation tensor 

3

2

1

   T

e e e ae a a

a

b F F n n                     (4.5) 

Inelastic part of left cauchy Green deformation tensor 

3

2

1

ˆ ˆ



   T

v v v av a a

a

b F F N N                      (4.6) 

Where, 
2
a

,  
2
ae

 and 
2
av

   are the eigen values   of total ,elastic and viscoelastic part cauchy 

deformation tensors. It is well known that left and right cauchy deformation tensors have the same 

eigen vectors. Subscript a represents the 1, 2, 3. 



True strain 

a a
ln( )                                                                                                                (4.7) 

Elastic part 

ae ae
ln( )                                         (4.8) 

Inelastic part 

av av
ln( )                                              (4.9) 

Solid like viscoelastic materials can be represented using generalized Maxwell element or generalized 

Kelvin element though, these models behaviour is same in loading, they are different in unloading. In 

this chapter detailed development of finite strain Maxwell and Kelvin models are described. Finite 

strain Maxwell model well developed in literature (Reese and Govindjee, 1998), Kelvin model is not 

been proposed for finite strain using internal variables concept upto the date. For sake of 

completeness development of Maxwell model given briefly.  

4.3. Maxwell model (Generalized Maxwell model): 

 

 

 

 

 

Maxwell model starts with assuming the stored energy can be additively decomposed into elastic and 

inelastic part. Elastic part is function of C , and inelastic part is function of 
e

C  

( ) ( )   e m eC C                                                                                             (4.10)                                                                                             

v  e      

 

Fig.3b   1-D Representation of the Generalised Maxwell model 

 



Where   represents total energy of model ( )e C  represents stored energy of spring which is 

parallel to Maxwell element and the ( )m eC represents the stored energy of spring in Maxwell 

element. Thermomechanical behaviour of metal are based on energy concept where as solid polymers 

is based on an entropy concept. So the constitutive equations are consistent with the second law of 

Thermodynamics which is also known as entropy inequality. Which states the entropy production for 

all thermodynamic process is never negative. The global formulation of 2nd law of thermodynamics 

merges into the Clausius-Duhem inequality, neglecting the temperature effects, inequality written as, 

1
: 0

2

 

 S C                                     (4.11) 

Eq.(4.10) substituted in the eq.(4.11)  

 1( ) ( ) ( )1
2 2 : : 0

2


    

     
   

T Te m e m e
v v e v v e

e e

C C C
S F F C C l l C

C C C
                             (4.12) 

Using Coll & Gurtin (1967) argument 

1( ) ( )
2 2   

 
 

Te m e
v v

e

C C
S F F

C C
                           (4.13) 

In Maxwell model stress is additively decomposed into elastic and inelastic part .using the eq.(4.13) in 

eq.(4.12) residual terms is, 

 
( )

2 : 0


 


Tm e
e v v e

e

C
C l l C

C
                                                                (4.14) 

eq. (4.14) further reduced into 

11
: ( ) 0

2

 
  
 


m v e e

L b b
                                                                                                      (4.15) 

Where 





 Tm

m e e

e

F F
C

                                                                                                    (4.16) 



Eq.(4.15) is represents the  dissipation inequality, should satisfy for any arbitrary deformation process. 

One way of doing eq. (4.15) positive definite is assuming the 1( )
v e e

L b b
  is function of 

m
  given as 

1 11
( ) :

2

    
v e e v m

L b b                                                                                                      (4.17) 

Where 1

v

 is fourth order isotropic tensor defined as 

1

v

d v

1 1 1
II I I I I

2 3 9

  
      

  

                                                                                          (4.18) 

Eq.(4.17) is evolution equation of Maxwell model, this implicit equation is solved using numerical  

techniques. It starts with assuming the trail be in elastic predictor step, and spatial velocity gradient (l) 

is zero inelastic corrector step (Reese and Govindjee ,1998a).  

( ) ev e
L b b



                                                                                                                     (4.19) 

Eq. (3.44) substitute in the eq. (3.43) and integrated equation gives 

   
1

1 2
exp :

9

  
        

 
n

n

t

e m m e trial

d vt

b dev I dt b
                                                              (4.20) 

Elastic tensor in reference configuration 

       
   

2 2
1 1 1 1      

 
   

e m
ABCD v v v vAP BQ CR DS

AB CD e ePQ RS

F F F F
C C C C

                          (4.21) 

 

 

 

 

 



4.4. Kelvin model (Generalized kelvin model): 

 

In the Kelvin model, as with the Maxwell model, the stored energy can be additively decomposed into 

elastic and an inelastic part. Unlike Maxwell model , Elastic part is a function of the elastic part of right 

Cauchy green deformation gradient (Ce), and inelastic part is function of inelastic part of right Cauchy 

green deformation gradient (Cv ) 

( ) ( )   ke e kv vC C                                                                                                   (4.22) 

Where   represents the total stored energy of the Kelvin model, ( )ke eC  the stored energy of 

K1spring, which is in series with the Kelvin element, and  ( )kv vC  the stored energy function of 

K2spring, which is parallel to the dashpot in the Kelvin element. At the thermodynamic equilibrium 

dashpot velocity is zero, and the model acts like two springs in parallel. Constitutive equations 

further should satisfy the second law of thermodynamics. For an isothermal process the second law 

of thermodynamics can be given in eq (4.10) and substituting the eq.(4.22) into eq.(4.10), 

( ) ( )1
: : : 0

2

   
  

 

ke e kv e
e v

e v

C C
S C C C

C C
                                                                (4.33) 

Using the equations (1.6) and (1.7) further reduced into 

 1 ( ) ( ) ( )1
2 : : : 0

2

T Tke e ke e kv v
v v e v v e v

e e v

C C C
S F F C C l l C C

C C C

 
    

     
   

         (4.34) 

e     
 

v 
η  ,  

v 
 

Fig.3c   1-D Representation of the Generalised Kelvin model 
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Using the Coleman and Gurtin (1967) argument it can be concluded from the eq. (4.34) is  

12  




Tke
v v

e

S F F
C

                                                  (4.35) 

Using eq. (4.34) in (4.35) dissipation inequality is 

 2 : : 0Tke kv
e v v e v

e v

C l l C C
C C

 
  

 
                                              (4.36) 

Using the property that the stress and strain have the same eigen vectors, one can see  that  

ˆ ˆ
ke e e ke

S C C S  and thus the symmetry property of Ce . Introducing Cv ˆ , ˆke kvS   and 


vC   in eq.(4.36) 

further reduced into (Reese  and Govindgee ,1998a) 

 ˆ : 0ˆ
ke e kv vS C l                            (4.37) 

where, ˆ
eS  is 2nd PK type and ˆ

kv is Cauchy type stresses with respect to an intermediate 

configuration, defined as  

( )ˆ 2 ke e

ke

e

C
S

C





                                                                                                             (4.38) 

( )
2ˆ Tkv v

kv v v

v

C
F F

C






                                                                                                        (4.39) 

Utilizing the symmetry property of ˆ
v
 , rewriting the eq.(2.4)  

 1 1ˆ : 0ˆT

e ke e e kv e e v eF S F F F F l F
                                     (4.40) 

1

e v eF l F


can be divided into a symmetric part and a skew symmetric part. Because stress is symmetry, 

skew symmetry part of 
1

e v eF l F


 do not play role in the equation (4.40) and symmetry part of 
1

e v eF l F


can be written as 11
( )

2
v e e

L b b
  is substitute in the eq.(4.40), it will be reduces into 



 1 11
: ( ) 0

2
ke kv e v e eb L b b

  
   

 
                                               (4.41) 

Where
e
 , 

v
 are the weighted Cauchy stresses in the current configuration, defined as 

ˆ T

e e e eF S F                                                                                                                     (4.42) 

ˆ T

v e kv e
F F                                                                                                                      (4.43) 

The rate of deformation tensor, D represents the total strain rate, decomposed into, elastic De and 

inelastic strain rate 11
( )

2
v e e

L b b
   

11
( )

2
e v e eD D L b b

 
   

 
                                                                                                  (4.44) 

Assuming positive definiteness, 11
( )

2
v e e

L b b
  can be treated as a function of  1

ke kv e
b
  ,  let 

 1 1 11
( ) :

2
v e e v ke kv e

L b b b
                                                                                        (4.45) 

where 

1

v

d v

1 1 1
II I I I I

2 3 9

  
      

  

                                                                                          (4.46) 

Where d , v  represents the coefficients of viscosity, if are constants d  , v  in Equation (4.46), then 

there is a linear relation between inelastic stress and inelastic strain rate and the model is called finite 

strain linear Maxwell model. Nonlinearity can be introduced by assuming the d , v and as function 

of inelastic strain and strain rate. 

Eq (4.45) is an evolution equation and the numerical integration of eq.(4.45) starts with the elastic 

corrector step, with the trail elastic left Cauchy deformation tensor assumed as 

   1

1 1



 


trial T

e n v nn
b F C F                                                                                                  (4.47) 



And assuming the spatial velocity gradient to be  zero in the inelastic corrector step,  

1
( )

2



 ev e
L b b                                             (4.48) 

Using the eq. (4.48),  the eq. (4.45) can be rewritten as,  

 1 1 12 :e e v ke kv e
b b b


                                       (4.49) 

Solving the differential eq. (4.49)  

  1
1 1exp 2 :

n

n

t t
trial

e v ke kv e e
t t

b b dt b


 



                                                                           (4.50) 

Assuming 1

v

  to be isotropic and the first order approximation of the above eq.(4.50) can be given as 

   1 11 2
exp

9

trial

e ke kv e ke kv e e

d v

b t dev b vol b b
 

  
      

   
                                      (4.51) 

It is easy to work with the principal coordinate system, where shear components of stress and strain 

disappear. Eq.(4.51) in the principal coordinate system is given as 

     2 2

ae ke kv ke kv aea trial

d v

1 2
exp t dev vol

9

  
            

   

                                (4.52) 

Where 

3
2

1

  e ae a a

a

n nb                                                                                                            (4.53) 
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1
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ke
ke ae a a

a ae

n n





  


                                                                                                  (4.54) 
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1
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kv e av a a

a av

b n n







  


 

                                                                                              (4.55) 



The evolution eq. (4.45) can be rewritten in terms of  true stress and true strain by applying the 

logarithm to both sides which is given as, 

        ae ke kv ke kv aea a trial

d v

1 1
t dev dev vol

2 9

 
            

  

                   (4.56) 

This is an implicit equation, and can be solved using Newton Rapson method given in next section. 

Elastic tensor in the reference configuration can be given as 

       
   

2
1 1 1 1     


 

ke
ABCD v v v vAP BQ CR DS

e ePQ RS

F F F F
C C

                                         (4.57) 

 

4.5. Finite element implementation of Maxwell model: 

Maxwell model is implemented in ABAQUS using UMAT option. The algorithm as follows 

Global iteration starts with assuming trial 
1n

F


which is input from ABAQUS 

1. Calculate the deviatoric part of 
1n

F


 and b 

1/3

1 1n n
F J F



 
                                                                                                     (4.58) 

1 1 1  
 T

n n n
b F F                                                                                                    (4.59) 

2. Calculate the eigen values 2  and eigen vectors n of 
1n

b  

3. Calculate the stress 

 
 

 
 

 

 
i

dev dev

aa i

ae ai i

   
   

   
                                                                          (4.60) 

4. Calculate the  e trial
b using following equation 

   1

1 1e n v ntrial n
b F C F



 
                                                                                       (4.61) 



5. Calculate the eigen values 2

e trial
( )  and eigen vectors na of  e trial

b  

6. Calculate the trail true strain  ae trial
  using following equation 

 ae ae trialtrial
ln( )                                                                                   (4.62) 

7.  To Calculate  
1e n

F


and  
1v n

F


using the local Newton Rapson method, we start with initial 

gauss values as 

 ae ae triali
( )                                                                                          (4.63) 

   
i

e aea trial
                                                                                           (4.64) 

Initial gauss value is equallent to trail value, these values changes in loop. Where as trail values will 

not change in local N-R loop                                                                                          

8.  Local Newton Rapson method loop starts here, Calculate the 
m

 using the following equations  

 
 

 
 

 
i m mdev

m aea i

ae aei i

  
   

   
                                                                        (4.65) 

      Calculate the error value 
v

r using following equation 

       
i i i

v e m aea a a trial

d

t
r


     


                                                                             (4.66) 

9. Check for convergence 
v

r < tolerarance, if it is converged go to step 13 , not continue the next 

steps 

10. Calculate the local stiffness matrix using following equation 

 

 

 

 
v kea a

e d eb bi i

r t
I

     
            

                                                                             (4.67) 

11. Calculate the corrected  e
  and  v

  using following equation 



   
 

 
 

1

i 1 i iv a

e e ea a b

e b i

r


  
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                                                                      (4.68) 

     
i 1 i 1

v ea n a

 

                                                                                           (4.69) 

12. Calculate the starches from updated true strain using following equations and go to step8 

   
i 1

ae ei 1 a
exp




                                                                                               (4.70) 

   
i 1

av vi 1 a
exp




                                                                                               (4.71) 

13. Calculate the elastic tensor in principal coordinate system 

   
 

2 2

mdev dev

ab ab

a b ae be

2
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D

   
     

   
                                             (4.72) 

14. Update the stress and elastic tensor to ABAQUS 

       Stress components (
ij

 ) 

 
3

i j

ij m a a ija

a 1

1
n n p

J 

                                                                                  (4.73) 

       where    
2

p J 1 J
D

   

        Elastic tensor ( ijkl )  

    

 

3 3
T i j k l

ijkl ab m ab a a b badev a 1 b 1

3 3
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ab i j k l i j k l
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1
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2
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



    

 

                                            (4.74) 

4.6. Finite element implementation of finite strain kelvin model: 

Proposed Kelvin model Implemented in ABAQUS using UMAT option. The algorithm as follows 

Global iteration starts with assuming trial 
1n

F


which is input from ABAQUS 



1. Calculate the deviatoric part of 
1n

F


 and C 

1/3

1 1n n
F J F



 
                                                                                                       (4.75) 

1 1 1

T

n n n
C F F

  
                                                                                                      (4.76) 

2. Calculate the eigen values 2  and eigen vectors n of 
1n

C


 

3. Calculate the  e trial
b using following equation 

   1

1 1e n v ntrial n
b F C F



 
                                                                                       (4.77) 

4. Calculate the eigen values 2

e trial
( )  and eigen vectors of  e trial

b  

5. Calculate the trail true strain  ae trial
  using following equation 

 ae ae trialtrial
ln( )                                                                                    (4.78) 

6.  To Calculate  
1e n

F


and  
1v n

F


using the local Newton Rapson method, we start with initial 

gauss values as 

 ae ae triali
( )                                                                                           (4.79) 

 av av ni
( )                                                                                               (4.80) 

7.  Local Newton Rapson method loop starts here, Calculatethe 
ke
  and 

kv
 using the following 

equations  

 
 
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                                                                       (4.82) 

8. Calculate the error value 
v

r using following equation 
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d
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                                                               (4.83) 

9. Check for convergence 
v

r < tolerarance, if it is converged go to step 13 , not continue the next 

steps 

10. Calculate the local stiffness matrix using following equation 

 
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 
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 
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                                                                (4.84) 

11. Calculate the corrected  e
  and  v

  using following equation 

   
 

 
 

1

i 1 i iv a

e e ea a b

e b i

r


  
        

                                                                          (4.85) 

     
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 

                                                                                               (4.86) 

12. Calculate the starches from updated true strain using following equations and go to step7 

   
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ae ei 1 a
exp




                                                                                               (4.87) 

   
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av vi 1 a
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


                                                                                               (4.88) 

13. Calculate the elastic tensor in principal coordinate system 

 
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2
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 
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                                                                           (4.89) 

14. Update the following terms to ABAQUS 

       Stress components (
ij

 ) 

 
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i j

ij ke a a ija
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1
n n p

J 
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       where    
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        Elastic tensor ( ijkl )  
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4.7. Summary 

In this chapter constitutive equations for finite strain Maxwell and Kelvin model are developed using 

concept of internal variables. Step by step procedure is given to implement the Finite element for 

these models in ABAQUS using UMAT option. Jacobi iteration method used to adopt the eigen values 

and eigen vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5  

RESULTS AND DISCUSSION 

5.1. Study on viscoelastic material models 

In this section Maxwell and kelvin model behaviour discussed while predicting the loading and 

unloading behaviour of rubber. Linear Maxwell model developed in Reese and Govindjee (1998a) 

implemented and fitted with experimental data. Nonlinearity introduced in Maxwell model using Lion 

function (1996). The result of Kelvin model formulation for finite strain has developed part of thesis. 

Nonlinearity used in kelvin is similar to Lion (1996).  In fig.5.1 shows the experimental data of rubber 

in loading and unloading with different strain rates 0.000667, 0.00667 and 0.0667 sec-1, the 

experimental data has been discussed in chapter.1.  Fig. 5.2 is experimental data of rubber for large 

strains with strain rates 0.00667, 0.033 sec-1. The variation and issues while fitting the experimental 

data with finite strain Maxwell and kelvin model has brought out clearly. 
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Fig. 5.1. Experimental data of rubber in loading and unloading with different strain 

rates.  

 



0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2

Nominal strain

N
o

m
in

a
l 

st
re

ss
(M

P
a
)

strain rate 0.00667/sec

strain rate0.033/sec

 

 

5.2. Finite strain linear Maxwell model: 

In linear model as discussed in chapter.4 evolution equation (4.36) the viscoelastic coefficients are 

constants. The coefficients of elastic part are determined using the experimental data of quasistatic 

test loading data using curve fitting. Other spring coefficient is determined using different strain rate 

loading paths and a viscous coefficient is determined using loading and unloading data (hysteresis). 

The experimental data of loading and unloading with different strain rates 0.000667, 0.00667 and 

0.0667 sec-1 is fitted with a linear model is shown in Fig.5.3-5.5. It can be observed that this model is 

poor prediction in the loading and unloading behavior because of the linear relation between 

viscoelastic part of stress and stain.  Maxwell model at low strain rate, stress in dashpot zero and effect 

of Maxwell element is zero. At higher strain rate strain in dashpot zero, total strain strains are taken 

by spring in Maxwell element it behaves like two elastic springs are in parallel. It means at low and 

high strain rates Maxwell model behaves like purely elastic. In between strain rates Maxwell model 

gives the rate dependent behaviour.  From fig.5.6, it is shown that rate dependent hysteresis increases 

with strain rate and then decreases. This kind of decaying with strain rate behaviour not observed in 

real material. The coefficients are given in table.5.1.  

Fig.5.2. Experimental data of rubber in loading and unloading with different strain rates.  
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Fig.5.3. Comparison of linear Maxwell model prediction with experimental data at strain rate 

0.000667 sec-1. 

 

Fig.5.4. Comparison of linear Maxwell model prediction with experimental data at strain 

rate 0.00667 sec-1  
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Fig.5.5. Comparison of linear Maxwell model prediction with experimental data at strain 

rate 0.0667 sec-1 

 

Fig.5.6. Hysteresis varies with strain rate using finite strain linear Maxwell model 

 



In Maxwell model hysteresis is totally controlled by the Maxwell element. The distribution of applied 

strain into elastic and inelastic strains with different strain rates 0.000667, 0.00667 and 0.0667 sec-1 

are shown in fig.5.7-5.9. It can be observed that in loading, applied strain rate is positive (in tensile 

test) correspondingly strain rate in dashpot is positive and increases with applied strain rate. To get 

the stress equilibrium in Maxwell element elastic strains are positive and increases with strain applied 

strain rate.  In unloading though, the applied strain rate is negative, strain rate in dashpot is positive s 

because elastic strain existed in Maxwell element (spring) during loading is positive. It takes some time 

to become negative strain rate in dashpot.  The strain at which the negative strain rate in unloading 

occurs in dashpot   increases with applied strain rate. Because of the positive strain rates in the 

dashpot, the hysteresis loop has a sharp edge at the tip and bulges when the elastic strains become 

negative. Because of delay in negative strain rate response this model cannot be used to fit the 

unloading behaviour for large strains (greater than 100% strain). Prediction of experimental data for 

large strains is shown in fig.5.10.  
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Fig.5.7. The variation in applied strain, elastic and inelastic strains linear Maxwell 

model at strain rate 0.000667 sec-1 
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Fig.5.8. The variation in applied strain, elastic and inelastic strains linear Maxwell model 

at strain rate 0.00667 sec-1 

 

 

Fig.5.9. The variation in applied strain, elastic and inelastic strains linear Maxwell 

model at strain rate 0.0667 sec-1 
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5.3. Finite strain Nonlinear Maxwell model: 

As discussed in chapter4, the difference between the linear and nonlinear models is the stress and 

strain rate relations in the dashpot of the Maxwell element. In linear model, inelastic stress is assumed 

to vary linearly with strain rate, using a viscoelastic coefficient. In the nonlinear model the viscoelastic 

coefficient is assumed to be of an exponential from given as: (Lion, 1996) 

m

3d 0 1

0 v

exp
s C

 
    
 
 

                                                                                            (5.1) 

Where 0, S0 are constants.  Physical meaning of this function is that the viscoelastic coefficient decays 

exponentially with strain rate (strain rate represented through stress in the Maxwell element) and 

increases with strain (strain represented by Cv). Exponential function has chosen to satisfy the second 

law of Thermodynamics. 

Nonlinear model fitted with available experimental data with different strain rates in loading and 

unloading is shown in fig. 5.11-5.13. It can be observed that nonlinear model predicts the loading 

behaviour accurately than the linear model. Because the control parameters in case of linear model is 

Fig.5.10. Comparison of linear Maxwell model prediction with experimental data  at 

strain rate 0.0667 sec-1 

 



one, where as in nonlinear model the number of control parameters are two. So it is quite possible 

that nonlinear model predicts the loading behaviour better than linear model.  Unloading behaviour 

is not captured accurately. As discussed in linear model, nonlinear model can be fitted large range of 

strain rates than linear model. As it can be seen from the fig.5.11 to 5.13 the hysteresis are increasing, 

where as for same range of strain rate in linear model hysteresis started increasing and decreasing.  
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Fig.5.11. Comparison of nonlinear Maxwell model prediction with experimental data  at 

strain rate 0.000667 sec-1  
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Fig.5.12. Comparison of nonlinear Maxwell model prediction with experimental data  at 

strain rate 0.00667 sec-1  

 

Fig.5.13. Comparison of nonlinear Maxwell model prediction with experimental data at 

strain rate 0.0667 sec-1  

 



The decomposition of applied strain into elastic and inelastic strains with respect to strain rates 

0.000667, 0.00667 and 0.0667 sec-1 are shown in fig.5.14-5.16. It can be noticed that the elastic strains 

and applied strain rates are positive in loading. With strain rate increases, elastic strains are increasing 

similar to linear model. In unloading, strain rate in the dashpot is positive, though the applied strain 

rate is negative. The strain at which negative inelastic strains occurs increases with strain rate. Because 

of that, the model results in a sharp edge at the tip of the hysteresis loop and a bulge as the elastic 

strains become negative.  It can be understood, Maxwell model don’t have the ability to obtain 

negative strain rate in tension and positive strain rates in compression. Existed negative strain rate in 

tension are virtual. In Linear and nonlinear Maxwell models hysteresis starts increasing initially upto a 

certain strain rate after which there is a decrease. 
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Fig.5.14. The variation in applied strain, elastic and inelastic strains nonlinear Maxwell 

model at strain rate 0.000667 sec-1 

 



-0.1

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120

Time (Sec)

S
tr

a
in

Applied strains

Elastic part

Inelastic part

 

 

 

 

 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12

Time(Sec)

S
tr

a
in

Applied strains

Elastic part

Inelastic part

 

 

 

 

 

 

 

Fig.5.15. The variation in applied strain, elastic and inelastic strains nonlinear Maxwell 

model at strain rate 0.00667 sec-1 

 

 

Fig.5.16. The variation in applied strain, elastic and inelastic strains nonlinear Maxwell 

model at strain rate 0.0667 sec-1 

 

 



5.4. Finite strain linear Kelvin model: 

In this section describes the developed finite strain linear kelvin model, the evolution equation (4.45) 

represents the relation between stress and strain rate in the dashpot of kelvin model, by assuming the 

d constant in eq. (4.46) linear relation adopted in model. Fig.5.17-5.19 shows the prediction of the 

loading and unloading behaviour using linear model with strain rates 0.000667, 0.00667, 0.0667 sec-

1. It can be observed that the model results in a poor prediction in loading and unloading. The linear 

Kelvin model behaves similar to the linear Maxwell model in loading. The result is different in 

unloading, the shape of unloading curve takes different from Maxwell model, and hysteresis loop is 

expanding the both side of quasistatic loop. Unlike the Maxwell model the hysteresis loop do not have 

the sharp edges at unloading initiates and bulging is not occurring in loop. 

 

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Nominal Strain 

N
o

m
in

a
l 

S
tr

es
s 

(M
P

a
) Experimental data

Linear Kelvin model

 

 

 

 

 

 

Fig.5.17. Comparison of linear Kelvin model prediction with experimental data  at strain 

rate 0.000667 sec-1  
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Fig.5.18. Comparison of linear Kelvin model prediction with experimental data  at strain 

rate 0.00667 sec-1  

 

Fig.5.19. Comparison of linear Kelvin model prediction with experimental data  at strain 

rate 0.0667 sec-1  

 



Fig.5.20, 5.21 shows the variation of elastic and inelastic strains in Kelvin model. The difference 

between Maxwell and Kelvin models is in unloading the elastic and inelastic strains are less then 

applied strains whereas in Maxwell model elastic strains are negative in tension and inelastic strains 

are greater than the applied strains (see fig.5.16). In unloading applied strain rate is negative, the 

strain rate in dash pot follows applied strain rate faithfully. Because of unloading negative strain rates 

exist in dashpot hysteresis loop don’t have the sharp edges and bulging behaviour. 
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Fig.5.20. The variation in applied strain, elastic and inelastic strains linear Kelvin model 

at strain rate 0.00667 sec-1 
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If the spring coefficients in Kelvin model are chosen such that K2 spring stiffness is much grater than 

K1 spring stiffness in that case the strain rate increases, strains in K1 spring increase, accompanied by 

a drop in strain in the Kelvin element,  in order to achieve the force equilibrium. Because of strain drop 

in the Kelvin element, the effect of k2 spring drops with strain rate and in an overall sense the model 

behaves like the Maxwell model. 

5.5. Finite strain nonlinear Kelvin model 

Nonlinearity is introduced in the Kelvin model by assuming the viscosity coefficient () to be a function 

of strain and strain rate. Strain in the dashpot is represented using the inelastic part of right Cauchy 

deformation tensor, Cv and the strain rate is represented through the stress in the dashpot.                                           
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                                                                                      (3.3) 

Where 0, S0 are constants. Fig.5.22,5.23 and 5.24 shows the prediction of Kelvin model in loading and 

unloading with strain rates 0.000667, 0.00667, 0.0667 sec-1  when both the springs stiffness is equal. 

Fig.5.21. The variation in applied strain, elastic and inelastic strains linear Maxwell model 

at strain rate 0.0667 sec-1 

 

 



It predicts the loading path well. It can be observed that the loading and unloading curves of the Kelvin 

model hysteresis loop expand equally on both sides of the quasistatic curve.  

 

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Nominal Strain 

N
om

in
al

 S
tr

es
s 

(M
P

a) Experimental data

Nonlinear Kelvin model

 

 

 

 

 

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Nominal Strain 

N
o

m
in

a
l 

S
tr

es
s 

(M
P

a
)

Experimental data

Nonlinear Kelvin model

 

 

 

 

 

5.23. Comparison of nonlinear Kelvin model prediction with experimental data  at strain 

rate 0.00667 sec-1  

 

Fig.5.22. Comparison of nonlinear Kelvin model prediction with experimental data at 

strain rate 0.000667 sec-1  
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Fig.5.25, 5.26 show the elastic and inelastic strain variations in Kelvin element at strain rates 0.00667, 

0.0667 sec-1. It can be observed that as the transition takes place from loading to unloading, dash pot 

takes time to reach a negative strain rate in the dashpot because of the negative strain rate in the 

dashpot, This results in   sharp edges to be  formed at the tip of the loading and unloading transition. 

Loop expansion about the quasistatic curve is not observed in the rubber test data. This model is also 

not suitable to predict the rubber unloading behaviour.  
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Fig.5.24. Comparison of nonlinear Kelvin model prediction with experimental data  at 

strain rate 0.0667 sec-1  

 

Fig.5.25. The variation in applied strain, elastic and inelastic strains nonlinear Kelvin model 

at strain rate 0.00667 sec-1 
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Table 3. Coefficients used in different models 

model coefficients 

Finite stain linear Maxwell model C1=0.054,  α=0.5 ; C1m=0.16; ηd=4 

Finite stain linear Maxwell model 

(large strains fig.1h) 

C10=0.454,  C20=-0.048, C30=0.004 ; C10m=0.22,  C20m=-0.022, 

C30m=0.0025 ; ηd=6 

Finite strain nonlinear  Maxwell 

model 

C1=0.054,  α=0.5; C1m=0.18 ; η0=120, S0=500 

Finite strain linear Kelvin model C1ke=0.19, α=0.5 ; C1kv=0.07 ; ηd=5 

Finite strain nonlinear Kelvin model C10ke=0.105,  α=0.5; C10kv=0.105 ; η0=100,S0=2000 

 

5.6. Summary: 

The finite strain linear Maxwell model is poor predicting the loading behaviour, and the nonlinear 

model gives a good prediction in loading behaviour. Both models are not able to capture the unloading 

behaviour.  In the Maxwell model, hysteresis    increases initially with strain rate and then decreases. 

The developed finite strain Kelvin model also predicts well the loading behaviour in the range of strain 

rates tested, the hysteresis increases with a Kelvin model.  

 

Fig.5.26. The variation in applied strain, elastic and inelastic strains nonlinear kelvin model 

at strain rate 0.0667 sec-1 

 

 



Chapter 6 

CONCLUSIONS 

Experiments like uniaxial tension, uniaxial compression and quasistatic test conducted on rubber. 

Study illustrates Mullins effect and the importance of constitutive model for small strain. The popular 

hyperelastic models evaluated for small strains. A new hyperelastic model has been proposed to 

capture the tension and compression once. Proposed model implemented in finite element software 

ABAQUS.  

Experimental data of rubber explain Rate dependent and rate independent hysteresis. Finite strain 

Maxwell model is implemented in ABAQUS to capture the loading and unloading behaviour of rubber. 

Inefficiency of Maxwell capturing the hysteresis and unloading behaviour, a new formulation has 

developed for kelvin model using internal variable concept. Finite element implementation of 

developed kelvin model has done in ABAQUS. Based on this work following conclusion are with drawn 

1. The Stored energy function which is expressed in terms of the first invariant alone like 

NeoHookean, Arruda Boyce and Yeoh can fit compression data with a small error, using the 

uniaxial tension data. The tension behaviour cannot be predicted accurately from compression 

data.  

2. The models which are function of first and second invariants like Mooney Rivlin and Vanderwaals 

require both tension and compression data. 

3. To fit the Ogden model both uniaxial tension and compression required.  

4. Proposed model can be predicted using either tension or compression data more accurately. 

5. The finite strain linear Maxwell model is poor predicting the loading behaviour, and the nonlinear 

model gives a good prediction in loading behaviour. In the Maxwell model, hysteresis increases 

initially with strain rate and then decreases.  



6. The developed finite strain Kelvin model also predicts well the loading behaviour in the range of 

strain rates tested, the hysteresis increases with a Kelvin model.  

7. Both Maxwell and kelvin models are not able to capture the unloading behaviour rubber. Further 

research is required to develop model to fit the unloading behaviour accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 Detailed derivation of elastic tensor for proposed stored energy function 

Proposed Stored energy function  

 
3 3

21 2
1 3

I (1 ) I 1
C *ln J 1

3 D

   
    

 

                                                                (A.1) 

Stored energy function can be additively decomposed into deviatoric part ( dev ) and volumetric part 

( vol ) written as 
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Deviatoric part of cauchy stress (
dev ) 
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Volumetric part of cauchy stress (
vol ) 
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Total stress ( ) 
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Deviatoric part of elastic tensor (
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Volumetric part of elastic tensor (
vol
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