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ABSTRACT 

 

KEYWORDS:  Finite viscoelasticity, viscoplasticity, mechanical behavior of 

elastomers, constitutive modeling, return mapping algorithms, 

multiplicative decomposition 

 

A constitutive model suitable for rubber has been developed in this work. It is based on 

the multiplicative decomposition of the total deformation gradient into elastic-

viscoelastic and elastic-plastic parts. Two independent intermediate configurations one 

for plasticity and the other for viscoelasticity are assumed. The total stored energy is 

assumed to be additively decomposed into three parts, elastic, viscoelastic and plastic. 

Viscous behavior is modeled based on the traditional spring dash pot system. Equilibrium 

hysteresis is modeled using endochronic theory of plasticity, because equilibrium 

hysteresis is similar to the rate independent plasticity. The advantage of using 

endochronic theory of plasticity is that there is no need to assume an yield surface. Since 

the aim here is to predict the equilibrium hysteresis, endochronic theory seems to be more 

appropriate. Two evolution equations one for viscous dash pot and the other for plastic 

dissipation are proposed based on the second law of thermodynamics. Both evolution 

laws are non linear in nature and Newton-Raphson (N-R) method is used for solution. 

The state variables for plasticity and viscous behavior are updated using two independent 

local N-R iterations. Return mapping algorithms in combination with operator split, 

which are successfully applied in the case of elastoplastic material models with 

multiplicative decomposition, are used. The predictor-corrector method makes the model 

 iii



computationally attractive and easy to implement for numerical codes such as finite 

elements. The material model is implemented in ABAQUS/Standard through UMAT 

subroutine. Yeoh form is used for all the stored energy functions involved.  A procedure 

for deriving the material constants is discussed. The type of experiments to be conducted 

in order to achieve material parameters is listed. Material constants are derived and 

compared with experimental data given in Lion (1996).  
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Notation (Continued) 

 xii



 
 

evb  elastic-viscoelastic left Cauchy-Green deformation tensor 

epb  elastic-plastic left Cauchy-Green deformation tensor 

ˆ
evb  volumetric elastic-viscoelastic left Cauchy-Green deformation tensor 

evb      deviatoric elastic-plastic left Cauchy-Green deformation tensor 

ˆ
epb  volumetric elastic-plastic left Cauchy-Green deformation tensor 

epb      deviatoric elastic-plastic left Cauchy-Green deformation tensor 

J  determinant of  deformation gradient 

evJ  determinant of  elastic-viscoelastic deformation gradient 

epJ  determinant of  elastic-plastic deformation gradient 

I  identity tensor 

H        nominal entropy flux 

R  entropy produced by the source per unit time and unit volume 

Q  Heat Flux 

R         Heat produced by the source per unit time and unit volume 

intd  dissipation 

vd  viscoelastic part of dissipation 

pd  plastic part of dissipation 

t  time in sec 

z
•

 kinematic arc length 

ψ  stored energy function per unit volume 

Notation (Continued) 

 xiii



 

eψ  elastic part of stored energy function 

vψ  viscoelastic part of stored energy function 

pψ  plastic part of stored energy function 

volψ  volumeric part of stored energy function 

isoψ  isochoric part of stored energy function 

Γ  total entropy  

η  entropy possessed by body 

θ  temperature in Kelvin 

ε  strain 

σ  Cauchy stress tensor 

eσ  elastic part of  Cauchy stress tensor 

vσ  viscoelastic Cauchy stress tensor 

pσ  plastic Cauchy stress tensor 

η  dissipation constant 

Dvη  deviatoric viscoelastic dissipation parameter 

Vvη  deviatoric viscoelastic dissipation parameter 

Dpη  deviatoric plastic dissipation parameter 

Vpη  deviatoric plastic dissipation parameter 

S  second-Piola Kirchoff stress tensor 

eS  elastic second-Piola Kirchoff stress tensor 

vS  viscoelastic second-Piola Kirchoff stress tensor 

Notation (Continued) 

 xiv



 

pS  plastic second-Piola Kirchoff stress tensor 

τ  Kirchoff stress tensor 

eτ  elastic Kirchoff stress tensor 

vτ  viscoelastic Kirchoff stress tensor 

pτ  plastic Kirchoff stress tensor 

vγ  viscoelastic fourth order isotropic tensor  

pγ  plastic fourth order isotropic tensor 

evλ  eigen values of elastic-viscoelastic deformation gradient 

epλ  eigen values of elastic-plastic deformation gradient 

 

 

 xv



CHAPTER 1 

 
CONSTITUTIVE MODELLING  

 
 
 
1.1 INTRODUCTION 
 
 
 
Rubber is an important material in many applications such as automobile tires, damping 

devices etc. In many cases rubber components are subjected to complex loading. Such 

complex loading give raise to a number of research issues. One such issue in the tire 

industry is the rolling resistance, which is due to the loading / unloading sequence of the 

tire.  

 
 
Mechanical properties of elastomers have been one of the most important research area.  

According to Treloar (1975), rubber can be considered as a sub class of a wider chemical 

group of elastomers.  

 
 
Mechanically, the important property that distinguishes rubber from other common 

materials such as metals is its ability to dissipate energy. In earlier days rubber is 

considered only as an elastic material, which can take large deformation before its failure. 

With the development of experimental facilities, rubber is established as a viscoelastic 

material which has a rate dependent deformation behavior. In addition to its ability to 

dissipate energy, rubber can also go through large range of deformations, before it fails to 



deliver the intended purpose. Depending on the type of rubber the maximum strain it can 

sustain may go up to 1000% (Reese and Wriggers, 1997). 

 
 
A major consumer of rubber today is the tire industry. One of the main functions of the 

automobile tire is to absorb the small scale vibrations that arise due to road conditions. 

Till today, there is no alternative material for rubber to match good damping 

characteristics, ability to sustain large deformations, ability to undergo large numbers of 

loading / unloading cycles without failure, and most importantly at reasonable cost. In 

case of tires, the hysteresis of rubber gives rise to what is known as rolling resistance. In 

a typical passenger car tires rolling resistance accounts for approximately 15% of the fuel 

consumed (Narasimharao, 2005). Its prediction depends on a proper constitutive 

viscoelastic model. Hence a constitutive model which accurately predicts the deformation 

behavior of rubber is of great importance in tire industry as well as in other industries, 

where rubber is the prime ingredient.  

 
 
Recent experimental investigations on the deformation behavior of rubber show a strong 

rate dependency along with the so called equilibrium hysteresis (Haupt and Sedlan, 

2001).   Hence for any constitutive model to represent the true nature of rubber, it should 

include non linear elasticity, rate dependencies and rate independent hysteresis (Lion, 

1997a).  According to Haupt (2000), mechanical material behavior can be classified into 

four categories, as shown in Figure. 1.1.  
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Rate-Independent 

Without Hysteresis With Hysteresis 

Rate-Dependent 

Quasi static curve 

Without Equilibrium Hysteresis With Equilibrium Hysteresis 

Fig. 1.1 Classification of Mechanical Behavior of Materials (Haupt, 2000) 
 

 
1.2 FINITE DEFORMATION MECHANICS 
 
 
 
If the material is expected to have high strain ranges, the general small deformation 

theory is not applicable and a whole new set of definitions for deformation, strain and 

stress measures have to be used. To this end concepts from continuum mechanics are 
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used. The following are the most general terms used in finite deformation mechanics 

defined here for completeness (Holzapfel, 2000). 

 
 
1.2.1 Deformation gradient 

 
 
Deformation gradient gives the relationship between an initial or reference configuration 

and the deformed configuration. An initial configuration is the position in space occupied 

by a body before the application of loads as shown in Figure 1.2. Under Lagrangian 

frame initial and the reference configuration are one and the same. A deformed 

configuration of a body is the position in space occupied by a body after the application 

of  forces. If is the infinitesimal line element in the reference configuration and same 

line element is deformed to  after the application of loads, the deformation gradient  

gives the relation ship between  and  

dX

dx F

dX dx

i
i

J

x
dx dX

X
∂

=
∂ J                                                                                                                 (1.1) 

i
iJ

J

x
F

X
∂

=
∂

                                                                                                                     (1.2) 

From Equation 1.2 it can be observed that  is a two point tensor involving point in 

reference configuration as well as deformed configuration. Also  defines the linear 

transformation which relates  in deformed configuration to  in reference 

configuration. It is worth noting that  also includes rigid body motion of the body. 

F

dX

dx dX

dX

 

 4



 x1 

x2 

Deformed Configuration 

X’ 

x 

Displacement u 

Reference configuration 

Fig. 1.2 Reference and Deformed Configurations of a Body  
 

 
1.2.2 Strain tensors 
 
 
 
There are two most important deformation tensors through which most of the strain 

measures are defined. The first one is called right Cauchy-Green deformation tensor or 

Green deformation tensor  defined through Equation 1.3 and the left Cauchy-Green 

deformation tensor or finger deformation tensor b defined through Equation 1.4. In 

general   is used when the strain definition is in material co-ordinates and  in the 

spatial co-ordinates.  

C

C b

TC F F=                                                                                                                        (1.3)  

                                                                                                                        (1.4) Tb FF=

One of the important features of both   and  is that they are symmetric. C b
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1.2.3 Push-forward and pull-back operations 
 
 
 
A push-forward is an operation in which a vector or tensor under the reference 

configuration is transformed to deformed or current configuration. A pull-back is an 

operation in which a vector or tensor under the current configuration is transformed to 

reference configuration. These are very useful operations used for example in Lie time 

derivative, in which the tensor under consideration is subjected to a pull-back to reference 

configuration, where material time derivative is calculated and then push-forwarded to 

current configuration. 

 
 
1.2.4 The second law of thermodynamics for continuum 
 
 
 
This is perhaps the most important law governing any constitutive model. The 

constitutive model should satisfy the second law of thermodynamics which is also known 

as entropy inequality principle. It states that ‘the total entropy production for all 

thermodynamic processes is never negative’. 

( )
0 0 0

( ) , 0Dt X t dV H N dS R d
Dt

η
Ω ∂Ω Ω

Γ = + ⋅ − ≥∫ ∫ ∫ V                                                        (1.5) 

In the Equation 1.5, denotes the total production of entropy, ( )tΓ ( ),X tη  is the entropy 

possessed by the body,  is the nominal entropy flux defined per unit reference 

surface area and 

( ,H X t )

R  is the entropy produced by the source per unit time and unit reference 

volume. 
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1.2.4.1 Clausius-Duhem inequality 
 
 
 
Assuming that entropy input is related to rate of thermal work, and the entropy flux  

and the entropy source 

H

R are related to heat flux Q  and heat source R , the Clausius-

Duhem inequality can be written as 

( )
0 0 0

( ) , 0D Qt x t dV N dS dV
Dt

η
θ θΩ ∂Ω Ω

Γ = + ⋅ − ≥∫ ∫ ∫
R                                                         (1.6) 

In Equation 1.6  it is postulated that 

QH
θ

= , RR
θ

=                                                                                                             (1.7) 

In the Equation 1.7  is the heat flux and Q R  is the heat produced by the source. 

Converting the surface integral in Equation 1.6 to volume integral and using the fact that 

the reference volume V is independent of time, the Clausius-Duhem inequality under 

material co-ordinates can be written as 

2

1 1 .R DivQ Q Gradη
θ θ θ

•

− + − ≥0θ                                                                                  (1.8) 

From the energy balance equation, eliminating the heat source R 

1: .P F e Q Gradθη θ
θ

• • •

− + − ≥0                                                                                       (1.9) 

In the Equation 1.9 the first term gives the stress power, which gives the rate of internal 

mechanical work, alternative forms of stress power can be used depending on the stress 

measure and the configuration under consideration. 
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1.3 ENDOCHRONIC THEORY OF PLASTICITY 
 
 
 
Endochronic theory of plasticity is originally introduced by Valanis (1971). The main 

feature that differentiates this theory from the classical theory of plasticity is that there is 

no concept of yield surface. It is originally developed for metals such as aluminum, brass 

etc. in which it is difficult to distinguish the starting point of yield on the stress strain 

curve. Valanis (1971) used thermodynamic internal state variables along with intrinsic 

time scale to represent the plastic deformation. This theory has many advantages 

compared to flow theory of plasticity e.g. simplicity in calculations and can represent the 

typical metal behaviors such as Bauschinger effect. Using his theory Valanis (1980) 

showed that the flow theory plasticity can be derived from endochronic theory.  

 
 
1.4 PRACTICAL APPLICATIONS: ROLLING RESISTANCE OF TIRE 
 
 
 
The dissipation behavior of the rubber is important in many cases as described in 

previous sections, here rolling resistance of the tire is briefed to understand importance of 

the dissipation behavior of rubber.   In simple terms the rolling resistance of a tire is 

nothing but the energy required to maintain the rolling motion of the tire. Consider a 

wheel rolling freely on a flat surface. If both the wheel and the road were perfectly rigid, 

and no friction exists between the road and the wheel, there would be no resistance and 

consequently no need to exert a tractive force. In real world however perfect rigid bodies 

do not exist and both the road and the wheel are subjected to deformation in the contact 

zone: To produce this deformation it is necessary to spend some energy which is not 
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completely recovered at the end of contact zone. This energy dissipation is what causes 

the rolling resistance (Genta, 1997).  While the rolling resistance is mainly due to the 

dissipative nature of the materials in the deformation zone, other small factors such as 

sliding between road and wheel, aerodynamic drag and friction in the wheel hub also 

contribute to it.  This dissipated energy is converted into heat and convected to the 

surroundings. The distribution of the contact pressure, which is symmetric with respect to 

the vertical axis under static conditions, becomes unsymmetric because of which the 

normal force shifts its axis of application from the centre of contact patch as shown in 

Figure 1.3. The rolling resistance is as a result of this shift in resultant force producing 

torque.  

 

 

Fig. 1.3 Rolling Resistance of a Tire 
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An estimate of dissipation of the energy gives a good first hand understanding of the 

amount of rolling resistance in a tire, as it is the prime contributor to it. A small 

contribution is made at the tire road interface. To this end, the material model should be 

able to represent the dissipation characteristics of the material accurately. In a typical 

passenger car tire, nearly twelve different materials are used. Figure 1.4 shows the 

different regions of typical passenger car tire. Almost all of them are dissipative in nature. 

 
 
 

 

Fig. 1.4 Cross Section of a Typical Passenger Car Tire Showing Different Regions 
(http://www2.eng.cam.ac.uk) 

 
 
 

Figure 1.5 shows the contribution to the dissipation from various parts of the tire. The 

study was done by Narasimha Rao( Narasimha Rao, 2005). The figure shows the 

approximate percentage of total dissipation in each of the tire materials for 235/75R15 

passenger car radial. The analysis was performed at 40 kmph rolling speed, 210 kPa of 
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inflation pressure and load on tyre is 6kN.  The tread material is the significant 

contributor to the rolling resistance with 55%.            

 

 

Tread 55% 

Side wall 10% 

Rim strip 6% 

Belt 4% 

Ply 18% 

Filler 7% Bead 0%

Fig. 1.5 Dissipation at Different Tire Regions Under Normal Operating Conditions 
(Narasimharao, 2005) 

 
 
 

1.5 LITERATURE SURVEY 
 
 
 
Traditionally rubber is considered as a hyperelastic material with a specific strain energy 

density function or stored energy function. Well known forms of strain energy density 

function include Mooney (Treloar, 1975), Ogden (Ogden, 1972), Yeoh (Yeoh, 1993) etc.  

While the hyperelastic approach to model rubber is phenomenological in nature, many 

attempts have been made to derive their behavior using statistical mechanics (Treloar, 

1975). The advantage of the micromechanical models is that they can represent the 
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deformation behavior accurately and the disadvantage is that it is very difficult to use 

them to solve practical problems.  

 
 
It is well known that the rubber shows what is known as rate dependency, also refereed to 

as hysteresis (Haupt and Sedlan, 2000). The fundamental models of viscoelasticity such 

as Maxwell model and the Kelvin-Voigt model are valid only for the linear range, close 

to the thermodynamic equilibrium, and go by the name linear viscoelastic models.  Many 

applications require the models to be non-linear elastic in nature. A number of 

viscoelastic material models suitable for rubber like materials were proposed e.g. Arruda 

and Boyce (1993), Bergstorm and Boyce (1998), Bonet (2001), Drozdov (1997), Haupt 

and Lion (2002), Holzapfel (1996), Lubliner (1985), Le Tallec et al.(1993) among others. 

Of the above models Arruda and Boyce (1993) proposed a eight-chain model based on 

the non-Gaussian behavior of the individual chains, Bergstorm and Boyce (1998) 

conducted experiments on filled and natural rubbers and proposed a constitutive model 

based on the multiplicative decomposition of the deformation gradient and Drozdov 

(1997) employed fractional derivatives of tensor functions for the constitutive model. 

 
 
 
An extension of the small strain approach to large strain viscoelasticity results in what is 

known as finite linear viscoelastic models.  One such model suitable for fiber reinforced 

material has been proposed by Kaliske (2000). Reese and Govindjee (1998a) have 

developed a finite non linear viscoelastic constitutive model for large deformations and 

large deviations away from thermodynamic equilibrium which is consistent with the 

second law of thermodynamics and uses multiplicative decomposition of the deformation 
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gradient. But their model does not include the equilibrium hysteresis. Reese and 

Govindjee (1998b) have proposed a thermo-viscoelastic constitutive model using a non 

linear evolution law to include thermal effects. The computational setting is also 

addressed and they have used predictor-corrector algorithm to integrate the evolution 

equations.  

 
 
Very recent models proposed by Haupt and Sedlan (2001), Lion (1997b, 1998), Lin and 

Schomburg (2003), Nedjar (2000b) consider viscoplasticity which include rate dependent 

and the so called rate independent hysteresis. Lion (1996) has suggested a viscoplastic 

constitutive model using an additive decomposition of the total stress into a rate 

independent equilibrium stress and a rate dependent overstress within the framework of 

dual variables. He has investigated the temperature effects on the mechanical properties 

of a filled-loaded rubber experimentally, and described a physically based method to 

represent its behavior. He used multiplicative decomposition of the total deformation 

gradient into mechanical and thermal parts. Lin and Schomburg (2003) have proposed a 

finite elastic-viscoelastic-elastoplastic constitutive model for rubber like materials 

including Mullins effect. Their model is based on the multiplicative decomposition of the 

deformation gradient and is derived using objective rates for calculating time derivatives.  

 
 
In contrast to the above models, Reese and Wriggers (1997), neglected the rate dependent 

behavior of rubber-like polymers and proposed a elastic-plastic material model using 

multiplicative decomposition of the deformation gradient and internal state strain like 

variables for modeling plasticity along with von-Mises yield criterion.  
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The other inelastic effect observed in rubber like polymers is Mullins effect (Mullins, 

1948; Beuche, 1959; Mullins, 1969), which is characterized as strain induced softening 

and persists only during initial cycles of deformation. Govindjee and Simo (1991) have 

proposed a damage model for incorporating Mullins effect from the micromechanical 

point of view. Govindjee and Simo (1992) extended the micromechanical model to 

phenomenological model for efficient implementation under numerical schemes. 

 
 
Simo (1992) has studied in detail the return mapping algorithm for finite elasto-plasticity 

from a computational point of view and his work  uses principle of maximum dissipation.  

 
 
1.6 MOTIVATION 
 
 
 
According Narasimha Rao et al. (2006), use of existing linear viscoelastic models are not 

sufficient to predict the experimental findings, warranting a non linear viscoelastic model 

for the simulation studies. There are many constitutive models proposed in the literature 

for rubber and viscoplasticity (Lion, 1996; Haupt and Sedlan, 2001; Lin and Schomburg, 

2003).  There are three key issues in developing a constitutive model.  The first is the 

parameter identification and measurement, the second is the ease of numerical 

implementation and the third is the computational efficiency. One finds that, a procedure 

for determining the material parameters is hardly addressed in many of the theoretical 

studies.  
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1.7 OBJECTIVES AND SCOPE 
 
 
 
The main objectives of the study are:  

1. Propose a constitutive model that takes care of the rate dependency, quasi static 

non linear elastic behavior and hysteresis and be consistent with the second law of 

thermodynamics.  

2. Implement the developed constitutive model in a Finite Element Code and to 

study its behavior under different test conditions.   

3. Develop a procedure for deriving material constants from the experimental data. 

 

The scope of the current work is to achieve the above objectives with the available 

experimental data in literature. In the process the following assumptions have been made. 

1. The material is assumed to be isotropic and homogeneous. 

2. The temperature effects are not included i.e. the material properties are assumed 

to be independent of temperature 

3. Mullins effect is not included and it is assumed that the material is pretreated to 

remove the Mullins effect. 

 
 
1.8 ORGANIZATION OF THE THESIS 

 
 
The thesis deals with the development of a finite non linear viscoelastic-plastic material 

model. A constitutive model based on the second law of thermodynamics is derived and 

it is implemented under numerical scheme. 
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Chapter 1 gives a general introduction to the rubber and constitutive modeling with 

experimental facts.  The importance of constitutive modeling of rubber is discussed for 

practical cases such as rolling resistance. A brief introduction to the general terms in 

finite deformation mechanics is also presented. This is followed by a list of objectives for 

the proposed work. 

 
 
Chapter 2 starts with a one dimensional (1-D) representation of the constitutive model. 

Later it is generalized to a three dimensional (3-D) setting assuming multiplicative 

decomposition of the deformation gradient and additive split of the total stored energy.  

The model is compared with the available models in literature. The algorithmic 

implementation of the developed model is discussed.  

 
 
Chapter 3 provides a brief introduction to implement  the constitutive model through 

UMAT subroutine in ABAQUS/Standard. The tangent modulus which is to be updated to 

ABAQUS through UMAT is derived. Complete algorithm for UMAT is stated step by 

step.  

 
 
In Chapter 4, the developed constitutive model is studied for various basic deformation 

characteristics. It also gives a general procedure to derive the material constants. Material 

constants were fitted for the available experimental data, using the developed procedure.  

 
 
In Chapter 5, the conclusions based on the current work are presented. The scope for 

future work is also stated. 
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Appendix A provides the complete derivations for the expressions used while developing 

the constitutive relations.  
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CHAPTER 2 
 
 
 

VISCOELASTIC-PLASTIC CONSTITUTIVE MODEL 
 
 
 

2.1 INTRODUCTION 

 
In this chapter a constitutive model is proposed which is suitable for elastomers and 

includes all the observed deformation behaviors as described in chapter 1. Initially a 1-D 

small strain representation of the constitutive model is presented and then it will be 

generalized for the three dimensional case.  

 
 
2.2 1-D REPRESENTATION OF THE CONSTITUTIVE   MODEL 

 
 
Figure 2.1 shows the 1-D viscoelastic – plastic rheological model as proposed by Lion 

(1997b). It has three springs in parallel, the top and bottom springs has dissipation 

elements in series. Dashpot attached to the spring at the bottom characterizes the rate 

dependent behavior. Dissipation element attached to the top spring characterizes the 

equilibrium hysteresis.  The springs can be non-linear in general. The small strain theory 

given below follows closely Lion (1997b). The other references include Lin and 

Schomburg (2003), Reese and Govindjee (1998a). But there are some differences in the 

form of the equations used in this work when compared to that given in these references. 

They are highlighted appropriately.  Let ε  be the total strain and let this total strain be 
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additively decomposed into ,v evε ε  and ,p epε ε . vε is the representative strain in the 

viscous dashpot and pε  is the stain in the plastic dissipation element.  

v evε ε ε= +                                                                                                                   (2.1a) 

p epε ε ε= +                                                                                                                    (2.1b) 

 
 

 

eE

evE
evη

epE
epη

ε
vε evε

pε epε

eE

evE
evη

epE
epη

ε
vε evε

pε epε

eE

evE
evη

epE
epη

ε
vε evε

pε epε
epE

epη

ε
vε evε

pε epε

Fig. 2.1 1-D Representation of the Viscoelastic-Plastic Material Model (Lion, 1997b) 
 

 
The total stored energy is also assumed to be additively decomposed into elastic, 

viscoelastic and plastic parts as shown below Lion (1997b). 

( ) ( ) (e e p ep v ev )ψ ψ ε ψ ε ψ ε= + +                                                                                 (2.2)                              

Where, ψ  is the total stored energy. 

The second law of thermodynamics in the form of dissipation inequality is given by 
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int :d σ ε ψ η θ
• • •

= − + ≥0

0

                                                                                            (2.3) 

In the Equation 2.3 first term represent the stress power, second term is the rate of change 

of free energy and third term is the dissipation due to is the entropy change. 

Neglecting the temperature effects the dissipation inequality reduces to  

int :d σ ε ψ
• •

= − ≥                                                                                                        (2.4) 

Substituting for ψ in the above equation 

int 0pe v v
v p

v p

d
ψ ψψ ψ ψσ ε ε

ε ε ε ε ε

• • •∂ ∂⎛ ⎞∂ ∂ ∂
= − − − − − ≥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

p ε                                     (2.5) 

From Coleman-Noll condition (Coleman and Gurtin, 1967) e
e

e

ψ σ
ε

∂
=

∂
, v

v
ψ σ
ε

∂
=

∂
, 

p
p

ψ
σ

ε
∂

=
∂

  the total stress σ  can be written as 

e p vσ σ σ σ= + +                                                                                                           (2.6) 

Which means, the total stress is also additively decomposed in the same way as that of 

the stored energy. Hence, 

int 0epev
v p

v p

d
ψψ ε ε

ε ε

• •∂∂
=− − ≥

∂ ∂
                                                                                   (2.7) 

One way of making the above equation to be positive definite is by making the two terms 

in the equation individually positive.  Now splitting the dissipation inequality into 

viscoelastic and equilibrium plastic parts 

( )int 0v
vvis

v

d ψ ε
ε

•∂
=− ≥

∂
                                                                                               (2.8) 
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( )int 0p
pep

p

d
ψ

ε
ε

•∂
= − ≥

∂
                                                                                             (2.9) 

To make the above equations positive definite Reese and Govindjee (1998a) suggested a 

form given in Equation 2.10. Here the same equation for the viscoelastic part is adopted 

from his work. On the other hand, the viscoplastic evolution equation can be written in 

the Valanis form, as suggested by Lion (1997b). His equation given below becomes 

cumbersome for numerical implementation.   

1 : v
v

v v

ψε
η ε

• ∂
= −

∂
                                                                                                         (2.10) 

 
1 : p

p

p p

z
ψ

ε
η ε

• • ∂
=−

∂
                                                                                                    (2.11) 

In the above equations vη , pη  are damping coefficients of viscoelastic and plastic 

dissipation elements and is the kinematic arc length. Equation 2.11 is simple in form 

and is consistent with Equation 2.10. By proposing evolution equations in the form 

shown in Equations 2.10 and 2.11, the dissipation inequality is satisfied for arbitrary 

deformation processes.  

•

z

  
 
2.3 DESCRIPTION OF THE CONSTITUTIVE MODEL 
 
 
 
Generalizing the 1-D model is based on the multiplicative decomposition (Lee, 1961; 

Lubliner, 1985) of the total deformation gradient into two parts, namely elastic-

viscoelastic and elastic-equilibrium plastic parts, given by 

ev vF F F=                                                                                                                    (2.12a)  
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ep pF F F=                                                                                                                   (2.12b) 

The schematic representation of the multiplicative decomposition is shown in the Figure 

2.2. It is worthwhile to note that the intermediate configuration defined by the 

multiplicative decomposition of the total deformation gradient is purely imaginary.  

Similar decomposition of the deformation gradient has been used by many researchers 

e.g. Lion (1997b), Lin and Schomburg (2003). 

 
 

 

Fv 

F= Fev Fv= FepFp

Fep 

Fev 

Fp 

Initial 
configuration Final 

configuration 

Viscoelastic 
intermediate 
configuration 

Plastic 
Intermediate 
configuration 

Fig. 2.2 Pictorial Representation of the Multiplicative Decomposition of the Total 
Deformation Gradient 

 
 
 
The total stored energy is assumed to be additively decomposed into three parts as 

discussed in the 1-D representation  and followed by Lion (1996), Reese and Govindjee 

(1998a) 

( , , ) ( ) ( ) ( )ev ep e v ev p epC F F C C Cψ ψ ψ ψ ψ= = + +                                                            (2.13) 
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Where is the right Cauchy deformation tensor defined as C

TC F F=                                                                                                                        (2.14) 

In the similar way  are defined as ,ev epC C

1T T
ev ev ev v vC F F F CF−= = −

−

                                                                                                 (2.15) 

1T T
ep ep ep p pC F F F CF−= =                                                                                                  (2.16) 

From the above definitions it can be observed that  are nothing but the push-

forward of the right Cauchy deformation tensor to the corresponding intermediate 

configurations defined by 

,ev epC C

vF  and pF . 

 
 
 All constitutive equations have to be consistent with the Second law of 

Thermodynamics, stated as the Clausius – Duhem inequality. After all, one of the popular 

definitions for an elastic material is based on zero dissipation. 

 
 
Starting with the Clausius-Duhem inequality (Holzapfel, 2000), 

1 :
2

S C ψ
• •

− ≥ 0                                                                                                               (2.17) 

Substituting for ψ  in the above equation 

1 1 12 2 2 : : :
2

p pT Te v v ev
v pv v p p

ev ep ev v ep p

CCS F F F F C F F
C C C C F C F

ψ ψψ ψ ψ• • •
− − − −

⎛ ⎞∂ ∂∂ ∂ ∂ ∂
− − − − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

0ep∂
≥  

                                                                                                                                      (2.18)  

From Coleman and Gurtin (1967) it can be concluded that,  

1 12 2 2 2pT Te v
v v p p

ev ep

S F F F F
C C C C

ψψ ψ ψ− − − −∂∂ ∂ ∂
= + + =

∂ ∂ ∂ ∂
                                                    (2.19) 
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Following Reese and Govindjee (1998a), writing 2 e
eS

C
ψ∂

=
∂

, 12 Tv
v v v

ev

S F F
C
ψ− −∂

=
∂

and 

12 p T
p p

ep

S F F
C p

ψ− ∂
=

∂
−  gives the additive decomposition of the total stress into elastic, 

viscoelastic and equilibrium plastic parts in a similar way to that of total stored energy. 

Utilizing this, the dissipation inequality reduces to 

: :p epv ev
v

ev v ep p

CC F
C F C F

ψψ • •∂ ∂∂ ∂
− −
∂ ∂ ∂ ∂

0pF ≥                                                                            (2.20) 

In which the first term is associated with viscoelastic dissipation and the second term 

associated with equilibrium hysteresis.  This dissipation inequality should be satisfied for 

any arbitrary deformation processes. Following Lion (1997b), one way is to decouple the 

viscoelastic and plastic parts of the dissipation and make the each term positive so that 

the total dissipation inequality is satisfied. 

Reducing the above equation to 

( ) ( )11 1: :
2 2v v ev ev p v eep epL b b L b bτ τ−⎧ ⎫ ⎧− ⋅ + − ⋅⎨ ⎬ ⎨

⎩ ⎭ ⎩
1 0− ⎫ ≥⎬
⎭

                                                       (2.21) 

Where, 

2 Tv
v ev

ev
evF F

C
ψτ ∂

=
∂

                                                                                                        (2.22a) 

2 p T
p ep

ep
epF F

C
ψ

τ
∂

=
∂

                                                                                                       (2.22b) 

To make Equation 2.21 positive definite and following Reese and Govindjee (1998a) for 

the viscoelastic case, the evolution equations of the following form are proposed. 

( ) 1 11 :
2 v ev ev v vL b b γ τ− −− ⋅ =                                                                                              (2.23a) 
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( ) 1 11 :
2 v ep ep p pL b b z γ τ

•
− −− ⋅ =                                                                                           (2.23b) 

Where,  is the kinematic arc length, which eliminates the rate dependency from plastic 

part of the evolution equation. These equations are also similar to that used by Lin and 

Schomburg (2003), though the Lin’s equation can be reduced to the above equation, 

Equation 2.23b seems to be consistent with Equation 2.23a and assumes Valanis (1971) 

form. 

•

z

vγ and pγ are positive definite fourth order isotropic tensors and defined as 

1 1 1 1
2 3 9v

Dv Vv

I I I I Iγ
η η

− ⎛ ⎞= − ⊗ +⎜ ⎟
⎝ ⎠

⊗                                                                          (2.24a) 

1 1 1 1
2 3 9p

Dp Vp

I I I I Iγ
η η

− ⎛ ⎞= − ⊗ +⎜ ⎟
⎝ ⎠

⊗                                                                         (2.24b) 

Equation 2.24a is the same as proposed by Reese and Govindjee (1998a) for viscoelastic 

dissipation. It is extended to represent equilibrium hysteresis as Equation 2.24b. Dvη  and 

Vvη  represent the deviatoric and volumetric viscosities respectively. Dpη  and Vpη  are the 

deviatoric and volumetric viscosities associated with plasticity. The first terms in each of 

the Equations 2.24a and 2.24b represent deviatoric part and the second term represents 

isochoric part.  Substituting 2.24a and 2.24b in 2.23a and 2.23b 

( ) ( ) (1 1 2 :
9v ev ev v v

Dv Vv
)L b b dev Iτ τ

η η
−− ⋅ = +                                                                  (2.25a) 

( ) ( ) (1 1 2 :
9v ep ep p p

Dp Vp
)L b b z dev Iτ τ

η η

•
−

⎛ ⎞
− ⋅ = +⎜⎜

⎝ ⎠
⎟⎟                                                          (2.25b) 

The evolution equations, called “flow rules”, as an analogy with elastoplasticity, obtained 

in this work are the similar to that of equations derived by Lin and Schomburg (2003) but 

following a different procedure. In the current work Lie time derivatives along with push- 
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forward and pull-back operations to maintain the objectivity are used which has stronger 

thermodynamic base. On the other hand, Lin and Schomburg (2003) used corotational 

formulation for rate quantities involved in the dissipation inequality and arrived at the 

following equations. 

log
1 :Vvev V

γ
vε ε φ γ τ−− =                                                                                                   (2.26a) 

log
1 :p

ep pZ γ
pε ε φ γ

•
−− = τ                                                                                               (2.26b) 

This completes the finite strain non-linear viscoelastic-plastic constitutive model. An 

efficient algorithm is to be employed in order to implement the model under numerical 

scheme. 

 
 
2.3.1 Incompressibility 

 
 
Often rubber is assumed to be incompressible in nature e.g. Ogden (1972). According to 

Holownia and James (1993), the effect of rate of deformation is very small on the 

dynamic bulk modulus. In the present context the material is assumed to be nearly 

incompressible. As proposed by Flory (1961) and successfully  implemented by Simo 

(1988), Reese and Wriggers (1997) in the context of elastoplasticity, Lubliner (1985), 

Bonet (2001) for finite viscoelasticity, Weber and Anand (1990), Lion (1997b), for finite 

strain viscoplasticity, the following decomposition of the  deformation gradient is used. 

ˆF FF=                                                                                                                         (2.29) 

Where, 

1
3F̂ J I=                                                                                                                        (2.30) 
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1
3F J F

−
=                                                                                                                     (2.31) 

F̂ is the volumetric part of the deformation gradient defined by equation 2.30 and F is 

the deviatoric part of the deformation gradient defined through equation 2.31. In the 

literature F is often referred to as modified deformation gradient. Also, in line with the 

above decomposition the following quantities are also defined. 

 ˆ
ev ev evF F F=                                                                                                                    (2.32) 

ˆ
ep ep epF F F=                                                                                                                    (2.33) 

Where, 

1
3ˆ

ev evF J I= ,
1
3

ev ev evF J F
−

=                                                                                                  (2.34) 

1
3ˆ

ep epF J I= ,
1
3

ep ep epF J F
−

=                                                                                                   (2.35) 

Using the above decompositions the modified left Cauchy-Green deformation tensor for 

viscoelstic and plastic parts becomes, 

ˆ ˆ ˆ T
ev ev evb F F= , T

ev ev evb F F=                                                                                               (2.36a) 

ˆ ˆ ˆ T
ep ep epb F F= , T

ep ep epb F F=                                                                                              (2.36b) 

To enable decoupled representation of the volume preserving and volume changing parts, 

the stored energy is also split into two parts (Holzapfel, 2000), as follows 

vol isoψ ψ ψ= +                                                                                                                (2.37) 

It is worth noting here that the additive decomposition of the stored energy function is in 

addition to the decomposition of the stored energy into elastic, viscoelastic and plastic 

parts. Thus each function takes the form:   
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( )( ) ( )( )e vol isoe e
J Fψ ψ ψ= +                                                                                       (2.38a) 

( )( ) ( )( )ev vol ev iso evev ev
Jψ ψ ψ= + F                                                                                (2.38b) 

( )( ) ( )( )ep vol ep iso epep ep
Jψ ψ ψ= + F                                                                               (2.38c) 

 
 
2.4 ALGORITHEMIC IMPLEMENTATION 

 
 
Exponential mapping along with operator split originally proposed by Weber and Anand 

(1990), Simo (1992), for elastic-plastic material is employed here to solve the viscoelastic 

and plastic evolution equations. It is a two stage algorithm, in the first stage approximate 

value is predicted and in the second stage predicted value is corrected. This prediction 

and correction continues in an iterative form till the equation is satisfied. 

 
 
Let the material state at time t = n is completely known and the main objective of the 

algorithm is to evaluate the material state at time t = n+1. The main feature of the 

algorithm is that the inelastic part of the deformation gradient is assumed to be zero.. in 

the time increment n to n+1. The pictorial representation of the solution procedure is 

shown in Figure 2.3. The algorithm employed here is same as that of Reese and 

Govindjee (1998a), except that here one extra evolution equation for equilibrium 

hysteresis through endochronic theory of plasticity is added. Under this algorithm 

initially the increment in the deformation from t = n to t = n+1 is estimated as if it is 

entirely elastic, making the viscous velocity gradient and the plastic velocity gradient to 

be zero in the current increment. Thus 
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evv evL b b
•

=                                                                                                                     (2.39a) 

epv epL b b
•

=                                                                                                                    (2.39b) 

Initially a trial value of stress is calculated as if the whole of the strain is elastic.  This 

trial values are corrected   so that the evolution equations are satisfied. 

 
 

 
Plastic Intermediate 

(Fv)n 
(Fev)trial

(Fev)n 

(F)n .X .xn
.xn+1 

(Fp)n 
(Fep)n 

(Fep)trial

t=0 
t=n+1 

t=n

t=n

Viscoelastic Intermediate Configuration 

initial Configuration 

f 
t=n

Fig. 2.3 Pictorial Representation of the Solution Procedure Using Exponential Mapping 
with Predictor-Corrector Method 

 

 
Applying Equation 2.39a in 2.23a and 2.39b in 2.23b during time t = n to t = n+1 

1 11 :
2 ev ev v vb b γ τ

•
− −− ⋅ =                                                                                                    (2.40a) 

1 11 :
2 ep ep p pb b z γ τ

• •
− −− ⋅ =                                                                                                  (2.40b) 
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Further, applying exponential mapping to the Equations 2.40a and 2.40b 

( )
1

1exp 2 :
n

n

t

ev v v ev trial
t

b dtγ τ
+

−
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ b                                                                               (2.41a) 

( )
1

1exp 2 :
n

n

t

ep p p ep trial
t

b z dt bγ τ
+•

−
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

∫                                                                           (2.41b) 

In Equations 2.41a and 2.41b  and ( )ev trial
b ( )ep trial

b  are given by  

( ) ( )1
1

T
ev n v nntrial

b F C−
+= 1F +

1+

                                                                                            (2.42a) 

( ) ( )1
1

T
ep n p nntrial

b F C F−
+=                                                                                            (2.42b) 

Integrating 2.41a and 2.41b 

( ) ( )( ) ( )
1

1
1exp 2 :

n
ev n n v v evt t

b t t γ τ
+

−
+

⎡= − −⎣ rial
b⎤⎦

rial
b⎤

⎥

                                                 (2.43a) 

( ) ( )( ) ( )
1

1
1exp 2 :

n
ep n n p p ept t

b z t t γ τ
+

•
−

+
⎡= − −⎢⎣ ⎦

                                           (2.43b) 

Substituting for vγ and pγ  and writing ( )nn ttt −=Δ +1  

( ) ( ) ( )
1

1 2exp :1
9n

ev v v evt t
Dv Vv

b t dev τ τ
η η+

⎡ ⎤⎛
= −Δ +⎢ ⎜

⎝ ⎠⎣ ⎦ rial
b

⎞
⎥⎟                                               (2.44a) 

( ) ( ) ( )
1

1 2exp :1
9n

ep p p ept trial
Dp Vp

b z t dev τ τ
η η+

•⎡ ⎤⎛ ⎞
= − Δ +⎢ ⎥⎜⎜⎢ ⎥⎝ ⎠⎣ ⎦

b⎟⎟                              (2.44b) 

The equations 2.44a and 2.44b are nonlinear in nature since the stresses vτ  and pτ  are 

functions of and . It is easier to solve these equations in principal space, assuming 

isotropy, i.e.,

evb epb

vτ , andevb pτ ,  are co-axial, epb
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( ) ( ) ( ) ( )2 21 2exp :1
9ev v v evA AA A trial

Dv Vv

t devλ τ τ
η η

⎡ ⎤⎛ ⎞
λ⎡ ⎤⎡ ⎤= −Δ +⎢ ⎜ ⎣ ⎦ ⎥⎟ ⎣ ⎦⎝ ⎠⎣ ⎦

                               (2.45a) 

( ) ( ) ( ) ( )2 21 2exp :1
9ep p p epA AA A trial

Dp Vp

z t devλ τ τ
η η

•⎡ ⎤⎛ ⎞
λ⎡ ⎤⎡ ⎤= − Δ +⎢ ⎥⎜ ⎣ ⎦ ⎟ ⎣ ⎦⎜⎢ ⎥⎝ ⎠⎣ ⎦

⎟                       (2.45b) 

In the Equations 2.45a and 2.45b, A indicates the principal directions 1, 2, 3. (  and 

are the principal values of  and , 

)2
ev A
λ

( )2
ep A
λ evb epb ( )v A

τ  and ( )p A
τ  are the principal values of  

vτ  and pτ  respectively.  Applying logarithm for equations 2.32a and 2.32b 

( ) ( ) ( ) ( )1 2 :1
9ev v v evA A A trial

Dv Vv

t devε τ τ
η η
⎛ ⎞

⎡ ⎤ ⎡ ⎤= − Δ + +⎜ ⎣ ⎦ ⎣ ⎦
⎝ ⎠

A
ε⎟                                      (2.46a) 

( ) ( ) ( ) ( )1 2 :1
9ep p p epA A A trial

Dp Vp

z t devε τ τ
η η

• ⎛ ⎞
⎡ ⎤ ⎡ ⎤=− Δ + +⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟

⎝ ⎠
A

ε                     (2.46b) 

Where, ε  is the logarithmic stretch and is defined as ( )lnA Aε λ=    

The Equations 2.46a and 2.46b are similar to that of Reese and Govindjee (1998a), the 

only difference is that here two evolution equations one for viscoelasticity and the other 

for equilibrium plasticity.   

 

2.4.1 Local Newton-Raphson (N-R) iterations 

 
 
Equations 2.33a and 2.33b are solved using N-R scheme since they are non-linear in 

nature. The step by step procedure for local N-R solution is given in Tables 2.1 and 2.2. 

Detailed expressions are given in Appendix A. Lin and Schomburg (2003) also obtained 

similar equations for representing viscoelasticity and elasto-plasticity in their finite 

elastic-viscoelstic-elastoplastic material law. However Lin and Schomburg (2006) 
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showed that the dissipation inequality with the objective rates is identical to the one with 

Lie time derivatives. They approximated objective rates to get the incremental solution, 

(refer to equation 38 to equation 44 in Lin and Schomburg, 2003). The two equations are 

reproduced below as Equation 2.47a and 2.47b for convenience. In other words, he has 

approximated an objective rate with a time rate. Though, it so happens that both the 

forms lead to the same equations at the end, Lie derivative usage followed here is 

consistent with the traditional approach in finite deformation elastoplasticity. 

log
1 :Vvev Vdt γ

vε ε φ γ −− = τ

p

                                                                                              (2.47a) 

log
1 :p

ep pdz γε ε φ γ −− = τ                                                                                               (2.48b) 

 

 
Table 2.1 Local N-R iteration loop for viscoelastic evolution equation 

 

1. Let ( ) ( ) ( ) ( ) ( )1 2 :1
9V ev v v evA A A A A trial

Dv Vv

r t devε τ τ
η η
⎛

ε
⎞

⎡ ⎤ ⎡= + Δ + −⎜ ⎤⎟⎣ ⎦ ⎣
⎝ ⎠

⎦  Let values of       

the variable to be calculated at K+1th increment form Kth increment. 

2.Linearizing ( w.r.t. ( )  )V A
r ev A

ε

( ) ( )
( )
( )

( )
1

0V A
V V evA A Bk k

ev B k

r
r r ε

ε+

⎛ ⎞⎡ ⎤∂ ⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎜ ⎟ ⎡ ⎤= + Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟⎡ ⎤∂ ⎣ ⎦⎝ ⎠
k
=  

3. Solve for  ( )ev B
ε⎡ ⎤Δ⎣ ⎦

4.Update ( ) ( ) ( )
1ev ev evA Ak k

ε ε ε
+

⎡ ⎤ ⎡ ⎤ ⎡= + Δ⎣ ⎦ ⎣ ⎦ ⎣ A k
⎤⎦  

5. Set k = k+1 and repeat till ( )V A
r tolerance<  
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Table 2.2 Local N-R iteration loop for equilibrium plastic evolution equation 
 

1. Let ( ) ( ) ( ) ( ) ( )1 2 :1
9P ep p p epA A A A trial

Dp Vp

r z t devε τ τ
η η

• ⎛ ⎞
A

ε⎡ ⎤ ⎡= + Δ + −⎜ ⎟ ⎤
⎣ ⎦ ⎣⎜ ⎟

⎝ ⎠
⎦  

Let values of the variable to be calculated at K+1th increment form Kth increment. 

2.Linearizing ( w.r.t. ( )  )P A
r ep A

ε

( ) ( )
( )
( ) ( )

1
0P A

P P epA A Bk k k
ep B k

r
r r ε

ε+

⎛ ⎞⎡ ⎤∂ ⎣ ⎦⎜ ⎟ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟⎡ ⎤∂ ⎣ ⎦⎝ ⎠

=  

3. Solve for  ( )ep B
ε⎡ ⎤Δ⎣ ⎦

4.Update ( ) ( ) ( )
1ep ep epA Ak k

ε ε ε
+

⎡ ⎤ ⎡ ⎤ ⎡= + Δ⎣ ⎦ ⎣ ⎦ ⎣ A k
⎤
⎦  

5.Set k = k+1 and repeat till ( )V A
r tolerance<  

 

 
 
2.5 CALCULATION OF DISSIPATION 
 
 
 
Calculation of dissipation is important for various applications. As it has already been 

stated the two possible sources of dissipation are through viscosity and plasticity. 

Following Reese and Govindjee (1998b) the internal dissipation due to viscous effects 

can be written as  

( ) 11d :
2v v v ev evL b bτ −=− ⋅                                                                                     (2.48a) 

Similarly he plastic part of the dissipation can be estimated by using 
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( ) 11d :
2p p v eep epL b bτ −=− ⋅                                                                                   (2.48b) 

Reducing equations 2.48a and 2.48b using 2.46a and 2.46b 

( )(v
v ev ev trial

d
t )τ ε ε=− −

Δ
                                                                                     (2.49a) 

( )(p
p ep ep trial

d
z t
•=− −
Δ

)τ
ε ε                                                                                (2.49b) 

Adding 2.49a and 2.49b gives the total dissipation. 

 
 
2.6 SUMMARY 

 
 
A viscoelastic-plastic constitutive model has been developed. A plasticity model using 

endochronic theory of plasticity is used to represent equilibrium hysteresis. Two 

independent evolution equations are used, one representing viscoelasticity and the second 

for viscoplasticity.  Product formula algorithm along with exponential mapping is used to 

integrate the evolution equation. The algorithm starts with the trial values for the 

viscoelastic and plastic internal variables and stresses and ends with two independent N-

R iterative loops for correcting the trial values. The total dissipation can be calculated 

using Equations 2.49a and 2.49b. 
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CHAPTER 3 
 
 
 

NUMERICAL IMPLEMENTATION 
 
 
 

3.1 ABAQUS UMAT 
 
 
 
The developed material model is implemented in the commercial finite element package 

ABAQUS (ABAQUS, 2005). ABAQUS offers three options for implementing user 

defined constitutive relations, which are known as UHYPER, UMAT and VUMAT. The 

subroutines can be coded using ANSI C or FORTRAN, depending on the availability of 

the compiler and proficiency of the user. 

 
 
Of these three, VUMAT is the subroutine for the ABAQUS/Explicit and UHYPER and 

UMAT are the subroutines for ABAQUS/Standard which is an implicit code. Among 

UHYPER and UMAT, UHYPER is restricted to only a particular class of materials 

known as hyperelastic materials, whereas UMAT has no such restriction and can be used 

for any constitutive relation that includes mechanical behavior. It is easier to implement 

UHYPER, since it only requires the derivatives of the strain energy density function of 

the hyperelastic material defined with respect to strain invariants.  

 
 
UMAT is provided with a larger range of inputs and can be used to update the solution 

dependent variables, which is required for the developed viscoelastic-plastic constitutive 

model. Since the material stiffness matrix needs to be updated by the user, it is difficult to 
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achieve convergence unless the matrix defined is exact or consistent.  The developed 

viscoelastic-plastic constitutive model is implemented through UMAT. 

 
 
The UMAT subroutine will be called at each integration point of an element for which 

user material is specified. In UMAT the Cauchy stress and the material Jacobian matrix 

need to be calculated and updated to ABAQUS/Standard.  

 
 
3.2 MATERIAL JACOBIAN MATRIX 
 
 
 
According to ABAQUS/Standard analysis user’s manual (ABAQUS, 2005), the material 

Jacobian matrix is given by 

1
J

IJ
IJKL

KL

C τ
ε

∂Δ
=

∂Δ
                                                                                                          (3.1) 

where, 

IJKLC  is the exact consistent Jacobian matrix 

J  is the determinant of deformation gradient 

IJτ is the Kirchhoff stress 

KLε is the strain 

Equation 3.1 can be viewed as the tangent modulus of the Jaumann rate of Kirchhoff 

stress. In standard literature it is represented as JCτ . Alternatively this expression can 

also be given by Belytschko et al. (2000). 

1J J
IJKL IJKL IJKLC C Cτ σ− Τ ′= +                                                                                                 (3.2) 

 36



where, 

IJKLCσΤ is the tangent modulus for the Truesdell rate of Cauchy stress. 

(1
2IJKL IK JL IL JK JK IL JL IKC δ σ δ σ δ σ δ σ′ = + + + )                                                        (3.3) 

For a hyperelastic constitutive relation the Truesdell rate of Cauchy stress is given by 

1
IJKL IJKLC J CσΤ −= τ                                                                                                          (3.4) 

Where, 

J is the determinant of the deformation gradient 

IJKLCτ is the spatial tangent moduli 

The spatial tangent moduli is calculated using 

2

4IJKL IM JN KP LQ
MN PQ

C F F F F
C C

τ ψ∂
=

∂ ∂
                                                                      (3.5) 

As can be observed from the above equations the material Jacobian matrix is a 4th order 

tensor involving 81 elements. It can also be noted that IJKLCσΤ has major symmetry and 

IJKLC′ is also a symmetric tensor which in turn results in symmetry of material Jacobian 

matrix. This symmetric property reduces the number of independent components to 36. 

These 36 components can be represented by a 6 x 6 matrix, which is known as material 

constitutive matrix in typical finite element terminology.  In UMAT, ABAQUS requires 

this material constitutive matrix to be updated from the user code. 

All the stored energy functions are assumed to be of Yeoh form (Yeoh, 1993). All 

simulations for monotonic tension use with displacement control except for creep 
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simulation in which load control is used. 8 node brick element is used with three degrees 

of freedom (dof)  on each  node.  

 
 
3.3 CALCULATION OF EIGEN VALUES AND EIGEN VECTORS 
 
 
 
To make the material model numerically efficient all the equations are transformed into 

principal space. Under the usual conditions of isotropy the program needs 6 independent 

components to be calculated from constitutive relations for the evaluation of stress tensor. 

The same reduces to 3 components if equations are transformed to principal space. In the 

proposed constitutive model at many places matrices are to be multiplied. Transformation 

of all these matrices to principal space reduces the enormous amount of computational 

time. Also, in the present case there are many matrices to be updated as solution 

dependent variables transforming all these into principal space will reduce the amount of 

data to be stored. This is very useful when the UMAT is applied to big problems such as 

rolling resistance prediction of an automobile tire. Also transformation to the principal 

space offers lesser number of variables and hence lesser ambiguity. 

 
 
Because of the above advantages, the constitutive model is transformed to principal space 

initially and in the last stages the stress components and the material Jacobian matrix are 

rotated back to the original Cartesian frame using the Eigen vectors and then updated to 

ABAQUS.  To evaluate the Eigen values and Eigen vectors of the various matrices 

involved Jacobi iteration method is used. The main advantage of the Jacobi iteration 

method is its reliability, as it guarantees solution for all real symmetric matrices. Also for 
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matrix sizes below 10 x 10 this method is competitive with more sophisticated methods. 

All the matrices for which Eigen values are to be found out in the present case are of  3 x 

3 order. Under this method the matrix under consideration is multiplied with a 

transformation matrix which converts the chosen set of off-diagonal element to zero, this 

transformations are continued till all the off-diagonal elements are with in the 

predetermined tolerance. The transformation matrix is updated at each iteration and the 

final matrix represents the eigen vectors as its columns. 

 
 
3.4 ALGORITHM 
 
 
 
UMAT Algorithm for developed viscoelastic-plastic constitutive model  

1. Get , , from ABAQUS input arguments and nF 1nF − ( )1

1v n
C−

−
, from the 

state variables. 

( )1

1p n
C−

−

2. Calculate , , ( ) ,J nb
trial

ev n
b ( )trial

ep n
b  

det( )J F=  

T
n n nb F F=  

( ) ( )1 1

1

trial

ev n v nnn
b F C− −

−
= F

F

 

( ) ( )1 1

1

trial

ep n p nnn
b F C− −

−
=  

3. Calculate nb , ( )trial

ev
n

b , ( )trial

ep
n

b  
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2
3

n nb J b
−

=  

( ) ( )
2
3

trial trial

ev ev ev nn
b J b

−
=  

( ) ( )
2
3

trial trial

ep ep ep nn
b J b

−
=  

4. Transform nb , ( )trial

ev
n

b , ( )trial

ep
n

b  to principal space to obtain principal values and 

principal directions. 

5. Calculate nε , ,  ( )trial
ev n
ε ( )trial

ep n
ε

( )lnn nε λ=  

( ) ( )( )ln
trialtrial

ev evn n
ε λ=  

( ) ( )( )ln
trialtrial

ep epn n
ε λ=  

6. Calculate nτ , ,  ( )trial
ev n
τ ( )trial

ep n
τ

e
n

n

ψτ
ε

∂
=
∂

 

( )
( )

trial v
ev trialn

ev n

ψτ
ε
∂

=
∂

 

( )
( )

trial v
ep trialn

ep n

ψτ
ε

∂
=
∂
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7. Calculate the final values of ( )ev n
τ , ( )ep n

τ , ( )ev n
ε  and ( )ep n

ε  using two 

independent local N-R iterations as described in Tables 2.1 and 2.2. 

8. Calculate the material Jacobian matrix as described in section 3.2 

9. Calculate nσ , ( , and )ev n
σ ( )ep n

σ  

1
n nJ

σ τ=  

( ) ( )1
ev evn n

evJ
σ τ=  

( ) ( )1
ep epn n

epJ
σ τ=  

10. Update state variables for ( )1
v n

C− , ( )1
p n

C−  

11. Calculate viscoelastic and plastic dissipation using 

( )( )v
v ev ev trial

d
t

τ ε ε=− −
Δ

 

( )(p
p ep ep trial

d z
t )τ
ε ε

•

=− −
Δ

                                                                                             

12. Update stress tensor and material Jacobian for ABAQUS. 

 
 
3.5 SIMULATION USING ABAQUS/Standard 

 
 
All the stored energy functions of springs i.e. elastic, viscoelastic and plastic 

contributions are assumed to be of Yeoh form, as specified below. 
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( ) ( ) ( ) ( ) ( ) ( ) ( 23
130

2
120110 11333 −+−+−+−= e

e
eeee J

D
ICICIC )ψ                       (3.6a) 

( ) ( ) ( ) ( ) ( ) ( ) ( 23
130

2
120110 11333 −+−+−+−= ev

v
vvvv J

D
ICICIC )ψ                    (3.6b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )23
130

2
120110 11333 −+−+−+−= ep

p
pppp J

D
ICICICψ                  (3.6c) 

All the finite element simulations for monotonic tension were run on a single element of 

unit size as shown in Figure 3.1. C3D8 is the element type which is a linear brick element 

with three dof  on each node. Displacement control is used for all simulations except in 

creep simulation. 

 

 

 

Fig. 3.1 Monotonic Tension Test Single Element Showing Boundary Conditions 
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3.6 SUMMARY 

 
 
ABAQUS/Standard UMAT is used to implement the developed viscoelastic-plastic 

constitutive model. UAMT is a powerful tool and it needs stress and material Jacobian to 

be updated from the used code written in ANSI C or FORTRAN. An expression for the 

material model is derived. A procedure for deriving Eigen values and Eigen vectors is 

adopted from the Jacobi iteration method. The total algorithm for UMAT is described as 

a step by step procedure. 
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CHAPTER 4 
 
 

RESULTS AND DISCUSSION 
 
 
 

4.1 UNI-AXIAL SIMULATIONS WITH PROPOSED CONSTITUTIVE MODEL 

 
 
In this section the developed constitute model is studied for its intended deformation 

behavior i.e viscoelastic and equilibrium hysteresis. The constitutive model is studied by 

conducting numerical experiments to understand its sensitivity to the material parameters 

involved.  Figure 4.1 shows the effect of the rate of loading on the stress strain curve.  
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Fig. 4.1 Variation of Nominal Stress with Rate of Loading 

 
The rate of loading is varied from 6.25 mm/sec to 200 mm/sec. It can be observed from 

figure that there is a significant effect of the rate of loading on the stress strain curve.  
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The curves approach the hyperelastic curve as the rate of loading is reduced. The 

hyperelastic curve is obtained by fitting Yeoh constants for the equlibium uni-axial 

tension experimental curve given by Haupt and Sedlan (2000). The viscoelastic and 

plastic constants are arbitrarily chosen. The material constants used for this study are 

listed in Table 4.1 as SET 2 constants  

 

Table4.1 Constants for viscoelastic-plastic material model 

Description 
SET1 

Constants 

SET 2 

Constants 

SET 3 

Constants 

SET4 

Constatnts 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa/sec) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

0.4195  

-0.1816  

0.0599  

0.4195  

-0.1816  

0.0599  

1.0  

0.4195  

-0.1816  

0.0599  

5.0  

0.8390  

-0.3632  

0.1198  

0.2098  

-0.0908  

0.0299  

1.0  

0.2098  

-0.0908  

0.0299  

5.0  

0.8390  

-0.3632  

0.1198  

0.2797  

-0.1211  

0.03994  

1.0  

0.1398  

-0.0605  

0.0199  

5.0  

0.2098  

-0.0908  

0.0299  

0.8390  

-0.3632  

0.1198  

1.0  

0.2098  

-0.0908  

0.0299  

5.0  

 

 
 

 45



Figures 4.2 and 4.3 shows the strain input and stress response for the creep loading, in the 

simulation load control is used with 0.75 N load applied in 0.25 sec and then the load is 

kept constant for 5 sec. From figure it can be observed that the strain increases even if the 

load is kept constant after 0.25 sec. This is due to the viscous nature of the constitutive 

model. 
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Fig 4.2 Input Load for Creep Test 
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Fig. 4.3 Increase of Strain at Constant Load in Creep Test 

 
 

In order to observe the presence of the equilibrium hysteresis, a uni-axial tension 

simulation is run at quasi static loading conditions. The resulting nominal stress vs. 

nominal strain graph is shown in Figure 4.4. It can be observed from the figure 

dissipation is present even at quasi static loading conditions. This dissipation is due to  

equilibrium hysteresis present in the model through plasticity. 
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Fig. 4.4 Presence of Equilibrium Hysteresis at Quasi Static Loading 

 
 
To observe the effect of elastic spring constants compared to viscoelastic and plastic 

constants, a uni-axial tension test is simulated with three different material constants as 

shown in Table 4.1. Figure 4.5 shows the comparison of the nominal stress vs. nominal 

strain graph for three different constants SET 1, SET 2 and SET 3.  The Yeoh constants 

for elastic part of the stored energy function are the same in SET 2 and SET 3. From 

figure  it can be observed that the change in nominal stress-nominal strain curve for SET 

2 and SET 3 is low compared to that of SET 1 constants, this is because the elastic Yeoh 

stored energy constants for SET 1 differ by one order of magnitude compared to SET 2 

and SET 3 constants. Whereas among SET 2 and SET 3 the viscoelastic and plastic part 

of stored energy function are changed significantly and the elastic part is not changed. 

 

 48



 

-0.5

0

0.5

1

1.5

2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nominal Strain

N
om

in
al

 S
tre

ss
 (M

Pa
)

SET1

SET2

SET3

 
Fig 4.5 Effect of Elastic Constants Compared to Viscoelstic and Plastic Spring Constants 

 
 

In the table for SET 4 constants the viscoelastic and elastic spring constants of SET 1 

constants are interchanged to observe the effect of springs. Figure 4.6 shows the effect of 

interchanging viscoelastic and elastic spring constants. From the figure it can be observed 

that effect of interchanging the spring constants is not linear, in other words if it had been 

the linear relation among all the spring constants, both constants give same curve. 
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Fig 4.6 Effect of Interchanging the Spring Constants 

 
 

4.1.1 Effect of elastic spring constants 

 
 
In this section the effect of elastic spring constants alone is studied. Table 4.2 shows two 

sets of constants namely SET 1 and SET 5. Only elastic spring constants are varied and 

other constants are not changed. Figure 4.7 shows the effect of changing the elastic spring 

constants. It can be observed from the figure that even though the shape of the curve is 

changed significantly the amount of dissipation is not changed. This is because the 

dissipation is only a function of viscoelastic and plastic parameters. 
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Table 4.2 Constants used for studying the effect of elastic spring constants 

Description SET 1 Constants SET5 Constants 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa /sec) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

0.4195  

-0.1816  

0.0599  

0.4195  

-0.1816  

0.0599  

1.0  

0.4195  

-0.1816  

0.0599  

5.0  

0.8390  

-0.3632  

0.1198  

0.4195  

-0.1816  

0.0599  

1.0  

0.4195  

-0.1816  

0.0599  

5.0  
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Fig. 4.7 Effect of Elastic Spring Constants 

 
 
4.1.2 Effect of viscoelastic spring constants 

 
 
To understand the effect of viscoelastic spring constants, they are varied as listed in Table 

4.3. Only viscoelastic spring constants are varied among SET 6 and SET 7 constants. 

Figure 4.8 shows the effect of changing the viscoelastic spring constants. From the figure 

it can be observed that SET 6 constants show more dissipation compared to SET 7 

constants.  From the figure it is also evident that besides changing the amount of 

dissipation, the viscoelastic spring constants are also affecting the shape of the curve. 

This is because this change has a direct bearing on the strain in the dashpot and hence the 

change in the dissipated energy. 
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Table 4.3 Constants used for studying the effect of viscoelastic spring constants 

Description SET 6 Constants SET7 Constants 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa /sec) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

0.4195  

-0.1816  

0.0599  

0.1398  

-0.0605  

0.0199  

10  

0.4195  

-0.1816  

0.0599  

5.0  

0.4195  

-0.1816  

0.0599  

0.4195 

-0.1816  

0.0599  

10  

0.4195  

-0.1816  

0.0599  

5.0  
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Fig. 4.8 Effect of Viscous Spring Constants on Monotonic Tension 

 
 
4.1.3 Effect of plastic spring constants 

 
 
To observe the effect of plastic spring constants the simulation is run with two different 

constants as listed in Table 4.4. Only plastic spring constants are varied among SET 1 

and SET 8 constants. Figure 4.9 shows the stress strain curves for the constants given in 

Table 4.4. It can be observed from the figure that amount of dissipation is more for SET 1 

constants. It can also be observed from the figure that the plastic spring constants also 

affect the shape as well as total dissipation. 
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Table 4.4 Constants used for studying the effect of plastic spring constants 

Description SET 1 Constants SET 8 Constants 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa /sec) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

0.4195  

-0.1816  

0.0599  

0.4195  

-0.1816  

0.0599  

1.0  

0.4195  

-0.1816  

0.0599  

5.0  

0.4195  

-0.1816  

0.0599  

0.2797  

-0.1211  

0.03994 

1.0  

0.1398  

-0.0605  

0.0199  

5.0  
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Fig. 4.9 Effect of Plastic Spring Constants on Equilibrium Hysteresis 

 

4.1.4 Effect of viscoelastic dissipation parameter Dvη  

 
 
In this section the effect of viscoelastic dissipation parameter Dvη  is studied.  Table 4.5 

lists two sets of constants in which only Dvη  is changed from 1.0 MPa/sec to 10 MPa/sec. 

Figure 4.10 shows the nominal stress vs. nominal strain curves for the constants listed in 

Table 4.5. From the figure it can be observed that the dissipation is more with increase in 

Dvη  value.  The shape of the curve is also affected with change in Dvη  value. 
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Table 4.5 Constants used for studying the effect of viscoelastic dissipation parameter Dvη  
 

Description SET 1 Constants SET 7 Constants 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa /sec) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

0.4195  

-0.1816  

0.0599  

0.4195  

-0.1816  

0.0599  

1.0  

0.4195  

-0.1816  

0.0599  

5.0  

0.4195  

-0.1816  

0.0599  

0.4195  

-0.1816  

0.0599  

10  

0.4195  

-0.1816  

0.0599  

5.0  
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Fig. 4.10 Effect of Viscous Damping Constant Dvη  on Monotonic Tension 

 
 
Figure 4.11 shows the effect of  Dvη  on relaxation curve. The total strain input is given in 

35 sec and then the material is allowed to relax under no load conditions for about 500 

sec. From the figure it can be observed that the amount of relaxation is more with the 

increased Dvη  value. It can also be observed that the curves converge to the same value of 

stress since equilibrium response which is defined through elastic and plastic parameters 

are not varied. 
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Fig. 4.11 Effect of Viscous Damping Constant Dvη  on relaxation 

 
 

4.1.5 Effect of plastic dissipation parameter Dpη  

 

Finally, to study the effect of Dpη  two sets of constants in which its value is changed 

from 0.5 MPa/sec to 5.0 MPa/sec. Table 4.6 shows the constants used for this study.  

Figure 4.12 shows the effect of increasing the plastic dissipation parameter. It can be 

observed from the figure that the amount of dissipation increases with decrease in the 

value of Dpη . The shape of curve is also gets affected as a result of change in Dpη  values. 
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Table 4.6 Constants used for studying the effect of plastic dissipation parameter Dpη  
 

Description SET 1 Constants SET 9 Constants 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa /sec) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

0.4195  

-0.1816  

0.0599  

0.4195  

-0.1816 

0.0599  

1.0  

0.4195 

-0.1816  

0.0599 

5.0  

0.4195  

-0.1816  

0.0599  

0.4195  

-0.1816  

0.0599  

1.0  

0.4195  

-0.1816  

0.0599  

0.5  
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Fig. 4.12 Effect of Plastic Dissipation Constant Dpη  on Equilibrium Hysteresis 

 

4.2 MATERIAL CONSTANTS DETERMINATION 

 

In this section a procedure for fixing up the material constants is outlined. It should be 

noted that in reality decoupling all the behaviors to equilibrium elastic, equilibrium 

plastic and viscoelastic is not possible. In other words, it is not possible to obtain a unique 

set of constants.  It is only an assumption that part of energy is spent in each mode of 

deformation behavior, and hence fixing up the material constants is a complicated 

problem. The following procedure is proposed in the thesis. 

The following experiments are to be carried out for determining the material parameters 

1. Uni-axial tension under quasi static conditions (1 cycle of loading-unloading) 
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2. Pure torsion under quasi static conditions (1 cycle of loading-unloading) 

3. Uni-axial tension at different strain rates (loading only) 

4. Torsion at different strain rates (loading only) 

5. Relaxation test 

In the present context the experimental data given in Lion (1996) is used to fit the 

constants. His monotonic tension experiments along with the relaxation experiment is 

shown in Figure 4.13 

 
 

 

Fig. 4.13 Lion’s Monotonic Tension Experiment at Different Strain Rates and the 
Relaxation Experiment (Lion, 1996) 

 
 
 

Initial step in determining the material constants is to a assume trial Yeoh constants by 

considering the material to be non linear elastic. This can be done using standard curve 

fitting algorithms.  To carry out this part, monotonic strain controlled experiments at a 

strain rate of 0.0002/sec (Figure 2.3 of Lion (1996)) is used. The Yeoh fit is shown in 
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Figure 4.14. From the figure, the inability of the Yeoh model to fit the experimental curve 

can be observed.   
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Fig. 4.14 Yeoh Fit for Lion’s Experiments and the Simulations  

 

Lion (1996) used a stored energy density function given in Equation 4.1 

( ) ( ) (
3

1 2 3
, , 1

1 3 3
2

i jsp
ijk

i j k
C I I I )1 kψ

ρ =

= − −∑ −                                                                     (4.1)  

It can be noted that even this fit is in error, when compared to the experimental work. 

From the figure it can also be observed that Yeoh model fits very well to the numerical 

simulations by Lion (1996). The Yeoh constants obtained are listed in Table 4.7 
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Table 4.7 Fitted Yeoh constants for experiments and simulations by Lion (1996) 

Constants Constants for Experimental data Constants for simulation data 

C10 (MPa) 

C20 (MPa) 

C30 (MPa) 

0.66754  

-0.2723  

0.0866  

0.4660  

-0.0959  

0.0354  

 

 

The next step is to fix the plastic spring constants and the value of Dpη  which represents 

equilibrium dissipation. An initial value of  Dpη  parameter is first assumed. In the present 

case Dpη  = 1.0 MPa/sec, is assumed. Since the quasi static loading is affected mostly by 

the elastic and plastic springs, iteratively elastic and plastic spring constants are chosen. 

Since springs are present in all the modes of deformation, namely, elastic, viscoelastic 

and plastic, the above spring constants arrived at by considering only elastic behavior can 

not be used. The spring constants have to be reallocated to the plastic and viscoelastic 

parts. When, one considers only the quasi static loading, the viscoelastic part has no 

contribution and the plastic spring alone plays a role. Initially, about 20 % of the behavior 

is assumed to be due to plastic part. Note that, the original elastic spring constants now do 

not fit the curve because Dpη  has a value of 1.0 MPa/sec. Now the values of both the 

spring constants are adjusted to make the curve coincide with the experimental value.  

The quasi static constants obtained are listed in Table 4.8. The quasi static curve for the 

obtained constants in Table 4.8 is given Figure 4.15 
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Table 4.8 Quasi Ssatic constants 

Constants Quasi Static Constants 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

0.2900  

-0.0479  

0.0283  

0.1864  

-0.0192 

0.0213  

1.0  
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Fig. 4.15 Comparison of Quasi Static Curve with Monotonic Tension Experiment (Lion, 
1996) at 0.0002/Sec Strain Rate. 
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 The next step is to fix the Dpη . This can be done by using quasi static cyclic loading 

curve. Since the Lion (1996) has carried out cyclic loading at a strain rate of 0.2/sec, the 

viscoelastic spring constant and  Dvη  should be determined before arriving at Dpη  value. 

For this purpose, the monotonic tension experiment conducted at a strain rate of 0.2/sec is 

used. An initial  Dvη  value of 1.75 MPa/sec is assumed. The spring constants are now 

redistributed, with an initial guess of 20 % due to the viscoelastic part. This is iteratively 

changed to fit the experimental curve. The resulting constants are listed in Table 4.9.  

 
 

Table 4.9 Viscoelastic-plastic constants 

Constants Viscoelastic-Plastic Constatnts 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa/sec) 

0.2900 

-0.0479 

0.0283 

0.1864 

-0.0192 

0.0213 

1.0 

0.2796 

-0.0479 

0.0354 

1.75 
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Figure 4.16 shows the comparison between the experiment at 0.2/sec strain rate and 

viscoelastic-plastic material model with the obtained constants at the same rate. The 

viscoelastic plastic material model fits the experiment with small error as shown in the 

figure. 
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Fig.  4.16 Comparison of Viscoelastic-Plastic Material Model with Monotonic Tension 
Experiment (Lion, 1996) at 0.2/Sec Strain Rate 

 

 
Now the Dvη  value is to be estimated, since the Dvη value is most significant in relaxation 

behavior, it is to be evaluated from the relaxation experiment. The value of Dvη is 

estimated to be 2.0 MPa/sec and the relaxation graph compared to initial Dvη  value of 

1.75 is shown in Figure 4.17.  
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Fig.  4.17 Comparison between Two Devη  Values for Step strain with relaxation  

 
 

With the revised coefficient, the monotonic tension at 0.2/sec strain rate is rerun to 

compare with the experimental data and is shown in Figure 4.18. 
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Fig.  4.18 Comparison of Viscoelastic-Plastic Material Model using updated Dvη  Under 
Monotonic Tension Experiment (Lion, 1996) at 0.2/Sec Strain Rate 

 
 
 

Finally Dpη  is to be determined. Dpη  has a significant effect on the equilibrium 

dissipation.  For this the cyclic loading curve at a rate of 0.2/sec with a mean strain of 0.0 

and with an amplitude of 0.3 (Lion, 1996) is used. The value of Dpη  is estimated to be 

0.75 MPa/sec.  Figure 4.19 shows the difference between an initial assumed Dpη  = 1.0 

MPa/sec and Dpη  = 0.75 MPa/sec.  Even though the graph looks to be similar the 

equilibrium hysteresis is slightly higher with Dpη  = 0.75 MPa/sec  
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Fig. 4.18 Cyclic Loading Experiment: Comparison different Dpη  values 
 
 
 

Figure 4.20 shows the comparison with the experimental data. If the material model is 

assumed to be only viscoelastic the equilibrium hysteresis which is observed in the 

experiment can’t be represented. The viscoelastic material is also plotted for comparison 

in the figure. The equilibrium hysteresis measured as the difference in stress at the same 

strain level, in Lion’s experiment at 18% strain it is 0.09Mpa while in the developed 

viscoelastic-plastic model it is 0.095 Mpa. 

 
 
The final constants for viscoelastic-plastic material model and the viscoelastic material 

model are listed in Table 4.10. 
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Fig. 4.20 Cyclic Loading Experiment: Comparison among the Experiment, Viscoelastic-
Plastic and Viscoelastic Material Models. 
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Table 4.10 Final Viscoelastic-plastic constants and Viscoelastic constants 

 

Constants 
Final Constants for Viscoelastic-

Plastic Material Model 

Final Constants for Viscoelastic 

Material Model 

C10el (MPa) 

C20el (MPa) 

C30el (MPa) 

C10ep (MPa) 

C20ep (MPa) 

C30ep (MPa) 

Dpη  (MPa/sec) 

C10ev (MPa) 

C20ev (MPa) 

C30ev (MPa) 

Dvη  (MPa/sec) 

0.2900 

-0.0479  

0.0283  

0.1864  

-0.0192  

0.0213  

1.0  

0.2796  

-0.0479  

0.0354  

2.0  

0.466  

-0.0959  

0.0353  

------ 

------ 

------ 

------ 

0.2796  

-0.0479  

0.0354  

2.0  

 

 

4.3 Comparison with Reese and Govindjee Model 

In this section the viscoelstic constitutive model is compared with Reese and Govindjee 

(1998a). In their work all the simulations use Ogden strain energy function for elastic as 

well as viscoelastic parts.  
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             Fig. 4.21 Shear test: Stress-Strain Curve at ±200% (Reese and Govindjee, 1998a) 
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Fig. 4.22 Shear test: Stress-Strain Curve at ±200% with viscoelastic constitutive relation 
and Yeoh strain energy function 
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4.4 SUMMARY 

 

The developed material model is studied for the sensitivity of the material parameters 

involved. Procedure for deriving material constants is also described. Material constants 

were derived for the test data given in Lion (1996). The developed material model is 

compared with the test data under complex loading conditions. The viscoelastic 

constitutive relation is compared to Reese and Govindjee (1998a) shear tests. 
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CHAPTER 5 
 
 
 

CONCLUSIONS 
 

 

5.1 CONTRIBUTION 

 

A viscoelastic-plastic constitutive model is developed based on the multiplicative 

decomposition of the deformation gradient and the additive decomposition of the total 

stored energy into elastic, viscoelastic and plastic parts. The developed material 

model is suitable for elastomers, wherein, the material shows rate dependent and rate 

independent hysteresis.  The predictor - corrector algorithm is proposed for numerical 

implementation which is very efficient, simple and is easy to implement. The 

constitutive model has been implemented in ABAQUS through user material 

subroutine UMAT. The step by step algorithm for UMAT is given.  

 

5.2 CONCLUSIONS 

 

The following are the conclusions with the developed viscoelastic-plastic constitutive 

model. 

1. The shape of the stress-strain curve is decided by elastic part of the stored energy 

density function. 

2. The total dissipation is a function of spring constants of viscoelastic and plastic 

parts as well as Dvη Dpη  parameters.  
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3. It is possible to derive a procedure for determining the material constants.  

4. It is possible to estimate the total dissipation in the deformation processes  

 

5.3 FUTURE SCOPE OF THE WORK 

 

1. The proposed constitutive model can be extended to include temperature effects. 

2. The developed constitutive model can also be applied for finding the rolling 

resistance in an automobile tire.  
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APPENDIX-A 

 
DETAILED EXPRESSIONS FOR YEOH MODEL 

 

A.1 CAUCHY STRESS FOR YEOH HYPERELASTIC MODEL 

 
 
The Yeoh form of the strain energy function can be given by 

( ) ( ) ( ) (2 3 2
10 1 20 1 30 1

13 3 3iso vol C I C I C I J
D

)1ψ ψ ψ= + = − + − + − + −                             (A.1) 

Where 1I  the first invariant of the left Cauchy deformation tensor 

(
2

2 2 23
1 1 2I J )3λ λ λ

−
= + +                                                                                                   (A.2) 

1 2 3J λ λ λ=                                                                                                                       (A.3) 

Kirchoff stress in principal space is given by 

A A
A

ψτ λ
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∂
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                                                                                                                   (A.4) 
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The deviatoric part of the Cauchy stress is given by 

[ ] [ ] ( ) ( )( )
5

223
1 10 20 1 30 1

1 12 2 3 3
3A A Aiso iso

J I C C I C I
J

σ τ λ
− ⎛ ⎞= = − + − + −⎜ ⎟
⎝ ⎠

3                      (A.9) 

The volumetric part of the Cauchy stress is given by 

[ ] (2 1)vol
A vol

d J
dJ D

)ψσ = = −                                                                                         (A.10) 

The total Cauchy stress is given by 

[ ] [ ] [ ]A Atotal iso vol
σ σ σ= + A                                                                                             (A.11) 

[ ] ( ) ( )( ) (
5

223
1 10 20 1 30 1

1 22 2 3 3 3
3A Atotal

J I C C I C I J
D

σ λ
− ⎛ ⎞= − + − + − +⎜ ⎟
⎝ ⎠

)1−                  (A.12) 

 

A.2 SPATIAL TANGENT MODULI FOR YEOH MODEL 

 

Now the spatial tangent moduli is to be calculated. It is also decomposed into isochoric 

and volumetric parts. The isochoric part of the tangent moduli is given by (Zienkiewicz 

and Taylor, 2000) 

( )
( )

3 3

1 1

3 3

1 1

2
1

M M N N
M MN I J K L

M N M N

IJKL iso
M N M N M N N M

MN I J K L I J K L
M N

M N

N N N N

c
J g N N N N N N N N

ψ τ δ
ε ε= =

= =
≠

⎧ ⎫⎛ ⎞∂
−⎪ ⎪⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪

= ⎨ ⎬
⎪ ⎪+ +
⎪ ⎪
⎩ ⎭

∑∑

∑ ∑
                  (A.13) 

Where (lnM )Mε λ=                                                                                                     (A.14) 
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Now 
M N

ψ
ε ε
∂
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is to be calculated 
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The volumetric part of the spatial tangent moduli is given by 

( ) 2IJKL IM MJ KL IN NK JLvol
c p pδ δ δ= − δ                                                                        (A.29) 
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When m nλ λ≠  the isochoric part of the spatial tangent modli is given by 
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When A Bλ λ=  the isochoric part of the spatial tangent modli is given by 
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